
Chapter 0: Math Notation  

 (p4). Sets 

 Sets, multi-sets, sequences, and tuples 

 Objects are members or elements 

 Membership: x ε S 

 Set notation: comma-separated list in “{}” 

 Set notation: {x| x ε S, has some property} 

        for all. “Ǝ” there exists 

 Multiset: members can be duplicated 

 Infinite set: set has infinite # of members 

 N = set of natural numbers {1, 2, …} 

 Z = set of integers {…, -2, -1, 0, 1, 2, …} 

 The Empty Set: Φ has no members (arity = 0) 

 Sequence or tuple notation: comma-separate list in “()” 

 Number of elements in each tuple: its arity 

 k-tuple has k elements; 2-tuple = Ordered Pair = Pair 

 Elements may be repeated 

 Relationships between sets:  

 Equal, disjoint, subset, proper subset 

 Set operations: compute new set from 2 or more sets 

 Union AUB, intersection A∩B, complementation A\B 

 Cartesian/cross product AxB = {(a,b)|a ε A. b ε B} 

 Power set of set A: set of all subsets of A 

 p.5 Venn diagrams 



 (p9). Relation R over A1,..An is some subset of A1 x ... x An  

 Also called a predicate 

 Write “R(x,y,z)” if tuple (x,y,z) ε R 

 One-place relations called properties 

 Positives = {x|xεZ, x>0} 

 Human = {x|x an object, x is human} 

 Successor = {(x,x+1)} 

 > = {(x>y)} 

 AdditionFact = {(x,y,z)|z=x+y} 

 Binary relations from a Power Set:  

 ParentOf = {(x,y)|x and y human and x is parent of y} 

 Properties: Assume R from AxA = A2 

 Reflexive: (a,a) in R  

 Symmetric: if R(a,b) then R(b,a) 

 Transitive: if R(a,b) and R(b,c) then R(a,c) 

 If all 3, then Equivalence Relation  

 Two object are “equivalent” in some sense) 

 A = P1 U P2 U …Pn where 

 Pi called an Equivalence Class 

 Pi and Pj all disjoint 

 Pi = set of all elements x, y such that R(x,y) 

 E.g. A=Z and R = {(x,y)|x mod 3 = y mod 3} 

 P0 = {0, 3, 6 , 9, 12, …}  

 P1 = {1, 4, 7, 10, 13, …} 



 P2 = {2, 5, 8, 11, 14, …} 

 Transitive closure:  computation of equivalence class 

 Start with some element x in class 

 Add in all elements y such that R(x,y) 

 Repeat until exhausted 

 Function f: related to binary relation F over AxB where  

 for all a in A there is exactly 1 b in B such that F(a,b) 

 Set A called Domain and set B called Range 

 Written f: A → B 

 Considered a mapping from argument a to result b 

 Notation: f(a) “stands for” object b such that F(a,b) is true 

 Argument and/or result may be tuples  

 Examples page 8 &9 

 Computation: given an a, find f(a) 

 Also called function evaluation or application  

 Types of functions: 

 Total: for each a, there is some b such that F(a,b) or f(a)=b  

 Partial: there is some a with no b such that F(a,b) or f(a)=b 

 Injective or one-to-one: f(a) = f(b) iff a = b 

 Surjective or onto:  for each b there is some a where f(a) = b 

 Bijective: both above 

 If A and B overlap, a is a fixed point if f(a) = a 

 f and g composable if f:A→B and g:B→C.  

 Can write g(f(a)) 



 Since functions are sets, we can define functions that have 

domains and ranges of functions 

 Functions are first class objects 

 Define composition function ◦: (A→B)x(B→C) → (A→C) 

 ◦(g, f) = h, where h:A→C and h(a) = g(f(a)) 

 Notation for binary functions (argument is 2-tuple) 

 Prefix f(a,b), infix a f b, postfix a b f 

 Commutativity: f(a, b) = f(b, a) 

 Associativity: f(a,f(b,c)) = f(f(a,b),c) 

 i is identity element if f(i,x) = f(x,i) = x 

 Predicate: function whose range is {true, false} 

 Equivalent to relation over domain 

 Curry function ‘: ( (A1xA2x…An)→B) → ( (A2x…An)→B)  

 Where ((‘f)(a1)) = g a1 where g a1(a2, …an) = f(a1, a2, …an) 

  



 (p.10). Graphs 

 Vertices and edges as sets 

 Degree 

 Labelled graph 

 Subgraph 

 Path, simple path, cycle, simple cycle 

 Connected graph 

 Tree 

 Directed graph 

 in-degree, out-degree 

 Directed path 

 Strongly connected  

 Graph = binary relation 

 (p. 14): Boolean Logic 

 Functions with domains and ranges from {0, 1} 

 And, or, exclusive or, equality, implication 

 

  



 (p. 13). Strings and Languages 

 Alphabet = set of symbols typically written as ∑ 

 String over an alphabet: sequence of symbols 

 Length: # of symbols in string 

 Empty string ε: string of no symbols 

 Reverse of a string = string with symbols in reverse order 

 Substring of string w: string that appears within string w 

 Concatenate(x,y): string x followed by string y, written xy 

 wk = concatenation of string w with itself k times 

 Kleene operators: unary operators on a string or set of strings 

 Kleene Star: w* = { ε, w, ww, www, wwww, …..} 

 If W is a set {w1, w2, ….}, W* = set of all 0 or more 

concatenations of strings from W 

 Kleene Plus: w+ or W+ - same as * but 1 or more times 

 x is a prefix of y if y = xz for some z 

 proper prefix: z not ε 

 string order 

 Lexicographic: familiar dictionary order 

 Shortlex or string order: same as above but short strings 

first 

 Language: set of strings formed in a particular way 

 Grammar: set of rules defining the valid strings 

 Prefix free: no member is proper prefix of another 

  



 (p.102) BNF (Backus Normal Form) 

 Language for describing common grammar rules  

 Set of substitution rules (or productions) 

 Nonterminal: name for a subset of strings that have some 

particular structure 

 Written as “<” name of nonterminal class “>” 

 E.g. <number> 

 Each rule of form “LHS  -> RHS” 

 LHS = “left hand side” = name of a nonterminal 

 RHS = “right hand side” = expression on how to 

concatenate strings in a valid fashion 

 Meaning: if you see a string as defined on right, you can call 

it a string of type named on left 

 Multiple rules can have same LHS 

 RHS may be > one string expressions separated by “|” 

 Meaning: any of the expressions works 

 A single RHS string expression 

 Concatenation of symbols from alphabet or nonterminals 

 May use Kleene operators * or  + 

 Applied to either a string or a nonterminal 

 May be recursive, i.e. may use nonterminal from LHS 

 Example simple sentences: page 103  

 Example simple expressions: page 105 

  



 (p. 17): Definitions, Theorems, Proofs 

 Definition: description of object or set of objects 

 Mathematical Statement: expresses that some objects have 

certain properties 

 Proof: logical argument that a statement is true 

 Theorem: statement that has been proven true 

 Lemma: proved statement used in bigger proof 

 Corollary:  statement that can be proven easily once some 

other statement is proven 

 (p. 18): composition of statements 

 Implication: if P then Q, or “Q if P”, written P => Q 

 Equivalence: P iff Q, written P  Q 

 Inferences: showing that some statement is true from some 

others 

 Forward Inference: given that statement P=>Q is true 

 If you can prove statement P is true 

 Then you can say Q is true 

 Backwards Inference: given statement P=>Q 

 If you can prove Q is false 

 Then you can say P must be false 

 Examples: p. 18 & p. 20 

  



 P.21. Proof Types 

 By construction: useful in “for all x Ǝy P(x,y)” 

 Demonstrate for any x how to construct the object y 

 Example p. 21, Theorem 0.22 

 By Contradiction: Want to prove some statement Q is true 

 Assume opposite of desired statement is false and show 

that this leads to a contradiction 

 And thus assumption that Q is false must be false 

 i.e. Q must be true 

 Also known as indirect proof 

 (p.22) prove that sqrt(2) is irrational 

 Assume opposite, i.e. sqrt(2) is rational = m/n 

 m and n have no common multiples 

 either m or n must be odd 

 Then n*sqrt(2) = m 

 Then n22 = m2 

 Thus m2 is even 

 Thus m must be even (square of odd always odd) 

 Thus m = 2k, or n22 = (2k)2 = 4k2  

 Thus n2 = 2k2  

 Thus n must also be even 

 But then both m and n must be even! Contradiction! 

 Thus sqrt(2) cannot be rational  



 By Induction: useful to show for all x in set X, P(x) is true, and 

elements of X can be placed in some order x1, …xk, … 

 3 step process 

 Basis Step: prove P(x1) is true 

 State the Induction Hypothesis: P(xk) => P(xk+1) for all k 

 i.e. what we are trying to prove is that if we assume 

P(xk) is true, then P(xk+1) must also be true  

 Induction Step: Prove Induction Hypothesis 

 Typically by assuming P(xk) is true 

 If induction step is proven true 

 And we prove P(x1) is true 

 Then P(x2) is true because P(x1) is  

 Then P(x3) is true because P(x4) is 

 Then … 

 Example 1+2+3+ … n = n(n+1)/2 

 (p. 24) example of mortgage calculation where 

 P = original principal  

 t = number of months of loan 

 Pt = loan remaining after t months 

 M = monthly interest rate percentage + 1 

 Y = monthly mortgage payment 


