
Chapter 0: Math Notation

 (p4). Sets

 Sets, multi-sets, sequences, and tuples

 Objects are members or elements

 Membership: x ε S

 Set notation: comma-separated list in “{}”

 Set notation: {x| x ε S, has some property}

 for all. “Ǝ” there exists

 Multiset: members can be duplicated

 Infinite set: set has infinite # of members

 N = set of natural numbers {1, 2, …}

 Z = set of integers {…, -2, -1, 0, 1, 2, …}

 The Empty Set: Φ has no members (arity = 0)

 Sequence or tuple notation: comma-separate list in “()”

 Number of elements in each tuple: its arity

 k-tuple has k elements; 2-tuple = Ordered Pair = Pair

 Elements may be repeated

 Relationships between sets:

 Equal, disjoint, subset, proper subset

 Set operations: compute new set from 2 or more sets

 Union AUB, intersection A∩B, complementation A\B

 Cartesian/cross product AxB = {(a,b)|a ε A. b ε B}

 Power set of set A: set of all subsets of A

 p.5 Venn diagrams

 (p9). Relation R over A1,..An is some subset of A1 x ... x An

 Also called a predicate

 Write “R(x,y,z)” if tuple (x,y,z) ε R

 One-place relations called properties

 Positives = {x|xεZ, x>0}

 Human = {x|x an object, x is human}

 Successor = {(x,x+1)}

 > = {(x>y)}

 AdditionFact = {(x,y,z)|z=x+y}

 Binary relations from a Power Set:

 ParentOf = {(x,y)|x and y human and x is parent of y}

 Properties: Assume R from AxA = A2

 Reflexive: (a,a) in R

 Symmetric: if R(a,b) then R(b,a)

 Transitive: if R(a,b) and R(b,c) then R(a,c)

 If all 3, then Equivalence Relation

 Two object are “equivalent” in some sense)

 A = P1 U P2 U …Pn where

 Pi called an Equivalence Class

 Pi and Pj all disjoint

 Pi = set of all elements x, y such that R(x,y)

 E.g. A=Z and R = {(x,y)|x mod 3 = y mod 3}

 P0 = {0, 3, 6 , 9, 12, …}

 P1 = {1, 4, 7, 10, 13, …}

 P2 = {2, 5, 8, 11, 14, …}

 Transitive closure: computation of equivalence class

 Start with some element x in class

 Add in all elements y such that R(x,y)

 Repeat until exhausted

 Function f: related to binary relation F over AxB where

 for all a in A there is exactly 1 b in B such that F(a,b)

 Set A called Domain and set B called Range

 Written f: A → B

 Considered a mapping from argument a to result b

 Notation: f(a) “stands for” object b such that F(a,b) is true

 Argument and/or result may be tuples

 Examples page 8 &9

 Computation: given an a, find f(a)

 Also called function evaluation or application

 Types of functions:

 Total: for each a, there is some b such that F(a,b) or f(a)=b

 Partial: there is some a with no b such that F(a,b) or f(a)=b

 Injective or one-to-one: f(a) = f(b) iff a = b

 Surjective or onto: for each b there is some a where f(a) = b

 Bijective: both above

 If A and B overlap, a is a fixed point if f(a) = a

 f and g composable if f:A→B and g:B→C.

 Can write g(f(a))

 Since functions are sets, we can define functions that have

domains and ranges of functions

 Functions are first class objects

 Define composition function ◦: (A→B)x(B→C) → (A→C)

 ◦(g, f) = h, where h:A→C and h(a) = g(f(a))

 Notation for binary functions (argument is 2-tuple)

 Prefix f(a,b), infix a f b, postfix a b f

 Commutativity: f(a, b) = f(b, a)

 Associativity: f(a,f(b,c)) = f(f(a,b),c)

 i is identity element if f(i,x) = f(x,i) = x

 Predicate: function whose range is {true, false}

 Equivalent to relation over domain

 Curry function ‘: ((A1xA2x…An)→B) → ((A2x…An)→B)

 Where ((‘f)(a1)) = g a1 where g a1(a2, …an) = f(a1, a2, …an)

 (p.10). Graphs

 Vertices and edges as sets

 Degree

 Labelled graph

 Subgraph

 Path, simple path, cycle, simple cycle

 Connected graph

 Tree

 Directed graph

 in-degree, out-degree

 Directed path

 Strongly connected

 Graph = binary relation

 (p. 14): Boolean Logic

 Functions with domains and ranges from {0, 1}

 And, or, exclusive or, equality, implication

 (p. 13). Strings and Languages

 Alphabet = set of symbols typically written as ∑

 String over an alphabet: sequence of symbols

 Length: # of symbols in string

 Empty string ε: string of no symbols

 Reverse of a string = string with symbols in reverse order

 Substring of string w: string that appears within string w

 Concatenate(x,y): string x followed by string y, written xy

 wk = concatenation of string w with itself k times

 Kleene operators: unary operators on a string or set of strings

 Kleene Star: w* = { ε, w, ww, www, wwww, …..}

 If W is a set {w1, w2, ….}, W* = set of all 0 or more

concatenations of strings from W

 Kleene Plus: w+ or W+ - same as * but 1 or more times

 x is a prefix of y if y = xz for some z

 proper prefix: z not ε

 string order

 Lexicographic: familiar dictionary order

 Shortlex or string order: same as above but short strings

first

 Language: set of strings formed in a particular way

 Grammar: set of rules defining the valid strings

 Prefix free: no member is proper prefix of another

 (p.102) BNF (Backus Normal Form)

 Language for describing common grammar rules

 Set of substitution rules (or productions)

 Nonterminal: name for a subset of strings that have some

particular structure

 Written as “<” name of nonterminal class “>”

 E.g. <number>

 Each rule of form “LHS -> RHS”

 LHS = “left hand side” = name of a nonterminal

 RHS = “right hand side” = expression on how to

concatenate strings in a valid fashion

 Meaning: if you see a string as defined on right, you can call

it a string of type named on left

 Multiple rules can have same LHS

 RHS may be > one string expressions separated by “|”

 Meaning: any of the expressions works

 A single RHS string expression

 Concatenation of symbols from alphabet or nonterminals

 May use Kleene operators * or +

 Applied to either a string or a nonterminal

 May be recursive, i.e. may use nonterminal from LHS

 Example simple sentences: page 103

 Example simple expressions: page 105

 (p. 17): Definitions, Theorems, Proofs

 Definition: description of object or set of objects

 Mathematical Statement: expresses that some objects have

certain properties

 Proof: logical argument that a statement is true

 Theorem: statement that has been proven true

 Lemma: proved statement used in bigger proof

 Corollary: statement that can be proven easily once some

other statement is proven

 (p. 18): composition of statements

 Implication: if P then Q, or “Q if P”, written P => Q

 Equivalence: P iff Q, written P Q

 Inferences: showing that some statement is true from some

others

 Forward Inference: given that statement P=>Q is true

 If you can prove statement P is true

 Then you can say Q is true

 Backwards Inference: given statement P=>Q

 If you can prove Q is false

 Then you can say P must be false

 Examples: p. 18 & p. 20

 P.21. Proof Types

 By construction: useful in “for all x Ǝy P(x,y)”

 Demonstrate for any x how to construct the object y

 Example p. 21, Theorem 0.22

 By Contradiction: Want to prove some statement Q is true

 Assume opposite of desired statement is false and show

that this leads to a contradiction

 And thus assumption that Q is false must be false

 i.e. Q must be true

 Also known as indirect proof

 (p.22) prove that sqrt(2) is irrational

 Assume opposite, i.e. sqrt(2) is rational = m/n

 m and n have no common multiples

 either m or n must be odd

 Then n*sqrt(2) = m

 Then n22 = m2

 Thus m2 is even

 Thus m must be even (square of odd always odd)

 Thus m = 2k, or n22 = (2k)2 = 4k2

 Thus n2 = 2k2

 Thus n must also be even

 But then both m and n must be even! Contradiction!

 Thus sqrt(2) cannot be rational

 By Induction: useful to show for all x in set X, P(x) is true, and

elements of X can be placed in some order x1, …xk, …

 3 step process

 Basis Step: prove P(x1) is true

 State the Induction Hypothesis: P(xk) => P(xk+1) for all k

 i.e. what we are trying to prove is that if we assume

P(xk) is true, then P(xk+1) must also be true

 Induction Step: Prove Induction Hypothesis

 Typically by assuming P(xk) is true

 If induction step is proven true

 And we prove P(x1) is true

 Then P(x2) is true because P(x1) is

 Then P(x3) is true because P(x4) is

 Then …

 Example 1+2+3+ … n = n(n+1)/2

 (p. 24) example of mortgage calculation where

 P = original principal

 t = number of months of loan

 Pt = loan remaining after t months

 M = monthly interest rate percentage + 1

 Y = monthly mortgage payment

