Chapter 0: Math Notation

- (p4). Sets
 - **Sets**, multi-sets, sequences, and **tuples**
 - Objects are members or elements
 - **Membership**: \(x \in S \)
 - Set notation: comma-separated list in “{}”
 - **Set notation**: \(\{x \mid x \in S, \text{ has some property}\} \)
 - \(\forall \) for all. “\(\exists \)” there exists
 - **Multiset**: members can be duplicated
 - **Infinite set**: set has infinite # of members
 - \(N = \) set of natural numbers \{1, 2, …\}
 - \(Z = \) set of integers \{…, -2, -1, 0, 1, 2, …\}
 - The **Empty Set**: \(\Phi \) has no members (arity = 0)
 - **Sequence** or **tuple** notation: comma-separate list in “()”
 - Number of elements in each tuple: its **arity**
 - \(k \)-tuple has \(k \) elements; 2-tuple = **Ordered Pair** = **Pair**
 - Elements may be repeated
 - Relationships between sets:
 - **Equal, disjoint, subset, proper subset**
 - Set operations: compute new set from 2 or more sets
 - **Union** \(A \cup B \), **intersection** \(A \cap B \), **complementation** \(A \setminus B \)
 - **Cartesian/cross product** \(A \times B = \{(a,b) \mid a \in A, b \in B\} \)
 - **Power set** of set \(A \): set of all subsets of \(A \)
 - p.5 Venn diagrams
(p9). **Relation** R over $A_1,..A_n$ is some subset of $A_1 \times ... \times A_n$

- Also called a **predicate**
- Write “$R(x,y,z)$” if tuple $(x,y,z) \in R$

One-place relations called properties
- Positives = $\{x | x \in \mathbb{Z}, x > 0\}$
- Human = $\{x | x$ an object, x is human\}$
- Successor = $\{(x,x+1)\}$
- $> = \{(x>y)\}$
- $\text{AdditionFact} = \{(x,y,z)|z=x+y\}$

Binary relations from a Power Set:
- $\text{ParentOf} = \{(x,y) | x$ and y human and x is parent of $y\}$
- Properties: Assume R from $AxA = A^2$
 - **Reflexive**: (a,a) in R
 - **Symmetric**: if $R(a,b)$ then $R(b,a)$
 - **Transitive**: if $R(a,b)$ and $R(b,c)$ then $R(a,c)$
- If all 3, then **Equivalence Relation**
 - Two object are “equivalent” in some sense)
- $A = P_1 U P_2 U ... P_n$ where
 - P_i called an **Equivalence Class**
 - P_i and P_j all disjoint
 - $P_i = \text{set of all elements } x, y$ such that $R(x,y)$
- E.g. $A=\mathbb{Z}$ and $R = \{(x,y)|x \mod 3 = y \mod 3\}$
 - $P_0 = \{0, 3, 6, 9, 12, ...\}$
 - $P_1 = \{1, 4, 7, 10, 13, ...\}$
- $P_2 = \{2, 5, 8, 11, 14, \ldots\}$

- **Transitive closure**: computation of equivalence class
 - Start with some element x in class
 - Add in all elements y such that $R(x,y)$
 - Repeat until exhausted

- **Function f**: related to binary relation F over $A \times B$ where
 - for all a in A there is exactly 1 b in B such that $F(a,b)$
 - Set A called **Domain** and set B called **Range**
 - Written $f : A \rightarrow B$
 - Considered a **mapping** from **argument** a to **result** b
 - Notation: $f(a)$ “stands for” object b such that $F(a,b)$ is true
 - Argument and/or result may be tuples
 - Examples page 8 & 9

- **Computation**: given an a, find $f(a)$
 - Also called **function evaluation** or **application**

- **Types of functions**:
 - **Total**: for each a, there is some b such that $F(a,b)$ or $f(a)=b$
 - **Partial**: there is some a with no b such that $F(a,b)$ or $f(a)=b$
 - **Injective** or **one-to-one**: $f(a) = f(b)$ iff $a = b$
 - **Surjective** or **onto**: for each b there is some a where $f(a) = b$
 - **Bijective**: both above
 - If A and B overlap, a is a **fixed point** if $f(a) = a$
 - f and g **composable** if $f : A \rightarrow B$ and $g : B \rightarrow C$
 - Can write $g(f(a))$
Since functions are sets, we can define functions that have domains and ranges of functions.

- Functions are first class objects.

- Define **composition function** \(\circ \): \((A \to B) \times (B \to C) \to (A \to C)\)

 \(\circ(g, f) = h\), where \(h: A \to C\) and \(h(a) = g(f(a))\)

- Notation for **binary functions** (argument is 2-tuple)

 - **Prefix** \(f(a, b)\), **infix** \(a \, f \, b\), **postfix** \(a \, b \, f\)

 - **Commutativity**: \(f(a, b) = f(b, a)\)

 - **Associativity**: \(f(a, f(b, c)) = f(f(a, b), c)\)

 - \(i\) is **identity element** if \(f(i, x) = f(x, i) = x\)

- **Predicate**: function whose range is \{true, false\}

 - Equivalent to relation over domain

- **Curry function**: \((\ (A_1 \times A_2 \times \ldots A_n) \to B) \to (A_2 \times \ldots A_n) \to B)\)

 - Where \(((\ 'f)(a_1)) = g_{a_1}\) where \(g_{a_1}(a_2, \ldots a_n) = f(a_1, a_2, \ldots a_n)\)
• (p.10). **Graphs**
 • Vertices and edges as sets
 • Degree
 • Labelled graph
 • Subgraph
 • Path, simple path, cycle, simple cycle
 • Connected graph
 • Tree
 • Directed graph
 • in-degree, out-degree
 • Directed path
 • Strongly connected
 • Graph = binary relation

• (p. 14): **Boolean Logic**
 • Functions with domains and ranges from \{0, 1\}
 • And, or, exclusive or, equality, implication
• (p. 13). **Strings and Languages**
 • **Alphabet** = set of **symbols** typically written as Σ
 • **String** over an alphabet: sequence of symbols
 • **Length**: # of symbols in string
 • **Empty string ε**: string of no symbols
 • **Reverse** of a string = string with symbols in reverse order
 • **Substring of string** w: string that appears within string w
 • **Concatenate**(x,y): string x followed by string y, written xy
 • $w^k = \text{concatenation of string } w \text{ with itself } k \text{ times}$
 • **Kleene operators**: unary operators on a string or set of strings
 • **Kleene Star**: $w^* = \{ \varepsilon, w, ww, www, wwww, \ldots \}$
 • If W is a set $\{w_1, w_2, \ldots \}$, $W^* = \text{set of all } 0 \text{ or more concatenations of strings from } W$
 • **Kleene Plus**: w^+ or $W^+ - \text{same as } * \text{ but } 1 \text{ or more times}$
 • x is a **prefix** of y if $y = xz$ for some z
 • **proper prefix**: z not ε
 • **string order**
 • **Lexicographic**: familiar dictionary order
 • **Shortlex or string order**: same as above but short strings first
 • **Language**: set of strings formed in a particular way
 • **Grammar**: set of rules defining the valid strings
 • **Prefix free**: no member is proper prefix of another
• **BNF (Backus Normal Form)**
 • Language for describing common grammar rules
 • Set of *substitution rules* (or *productions*)
 • **Nonterminal**: name for a subset of strings that have some particular structure
 • Written as “<” name of nonterminal class “>”
 • E.g. <number>
 • Each **rule** of form “LHS -> RHS”
 • LHS = “left hand side” = name of a nonterminal
 • RHS = “right hand side” = expression on how to concatenate strings in a valid fashion
 • Meaning: if you see a string as defined on right, you can call it a string of type named on left
 • Multiple rules can have same LHS
 • RHS may be > one string expressions separated by “|”
 • Meaning: any of the expressions works
 • A single RHS string expression
 • Concatenation of symbols from alphabet or nonterminals
 • May use Kleene operators * or +
 • Applied to either a string or a nonterminal
 • May be recursive, i.e. may use nonterminal from LHS
 • Example simple sentences: page 103
 • Example simple expressions: page 105
• (p. 17): Definitions, Theorems, Proofs
 • **Definition**: description of object or set of objects
 • **Mathematical Statement**: expresses that some objects have certain properties
 • **Proof**: logical argument that a statement is true
 • **Theorem**: statement that has been proven true
 • **Lemma**: proved statement used in bigger proof
 • **Corollary**: statement that can be proven easily once some other statement is proven
 • (p. 18): composition of statements
 • **Implication**: if P then Q, or “Q if P”, written P => Q
 • **Equivalence**: P iff Q, written P ⇔ Q
 • **Inferences**: showing that some statement is true from some others
 • **Forward Inference**: given that statement P=>Q is true
 • If you can prove statement P is true
 • Then you can say Q is true
 • **Backwards Inference**: given statement P=>Q
 • If you can prove Q is false
 • Then you can say P must be false
 • Examples: p. 18 & p. 20
P.21. **Proof Types**

- **By construction:** useful in “for all \(x \) \(\exists y \ P(x,y) \)”
 - Demonstrate for any \(x \) how to construct the object \(y \)
 - Example p. 21, Theorem 0.22

- **By Contradiction:** Want to prove some statement \(Q \) is true
 - Assume opposite of desired statement is false and show that this leads to a contradiction
 - And thus assumption that \(Q \) is false must be false
 - i.e. \(Q \) must be true

- Also known as indirect proof

- (p.22) prove that \(\sqrt{2} \) is irrational
 - Assume opposite, i.e. \(\sqrt{2} \) is rational = \(m/n \)
 - \(m \) and \(n \) have no common multiples
 - either \(m \) or \(n \) must be odd
 - Then \(n \sqrt{2} = m \)
 - Then \(n^22 = m^2 \)
 - Thus \(m^2 \) is even
 - Thus \(m \) must be even (square of odd always odd)
 - Thus \(m = 2k, \) or \(n^22 = (2k)^2 = 4k^2 \)
 - Thus \(n^2 = 2k^2 \)
 - Thus \(n \) must also be even
 - But then both \(m \) and \(n \) must be even! Contradiction!
 - Thus \(\sqrt{2} \) cannot be rational
• **By Induction**: useful to show for all x in set X, $P(x)$ is true, and elements of X can be placed in some order $x_1, ...x_k, ...$

• 3 step process
 • **Basis Step**: prove $P(x_1)$ is true
 • **State the Induction Hypothesis**: $P(x_k) \Rightarrow P(x_{k+1})$ for all k
 • i.e. what we are trying to prove is that if we assume $P(x_k)$ is true, then $P(x_{k+1})$ must also be true
 • **Induction Step**: Prove Induction Hypothesis
 • Typically by assuming $P(x_k)$ is true

• If induction step is proven true
 • And we prove $P(x_1)$ is true
 • Then $P(x_2)$ is true because $P(x_1)$ is
 • Then $P(x_3)$ is true because $P(x_4)$ is
 • Then ...

• Example $1+2+3+...+n = n(n+1)/2$

• (p. 24) example of mortgage calculation where
 • $P =$ original principal
 • $t =$ number of months of loan
 • $P_t =$ loan remaining after t months
 • $M =$ monthly interest rate percentage + 1
 • $Y =$ monthly mortgage payment