Chap 1.1 - Finite Automata

- Automata: (Greek for "self-acting") Device that
- Performs its actions at (usually fixed) periodic intervals (Called a Clock)
- With the change to the next interval called a tick
- Accepts strings of input data one per tick
- Optionally generates an output one per tick
- Can be associated with either state or edge
- Carries over memory of the state of its computation from tick to tick
- Follows a stored set of transition rules that determines for each input \& current state:
- what is new state, what is output
- State:
- Dictionary: particular condition that something is in at a specific time
- For automata: Sum total of all information about computation that may affect what it does next
- Corresponds to "memory"
- Example: p. 32 - automatic door opener
- (p. 35) Finite Automata (FA) a.k.a Finite State Machine
- Number of different states that system can be in is fixed
- Equivalent to a finite (and small) amount of memory
- Transition rules can only specify from one of these states to another
- For now only one kind of output: "Yes" or "No"
- Alternatively "Accept" or "Reject"
- P. 34. State Diagram: Graph representation of a FA
- One "labelled vertex" per state
- Label is name of state
- "Labelled Edge" represents a transition rule
- Source vertex is state FA is in before a tick
- Edge label is symbol that was on input
- Target vertex is state the FA goes into next
- If multiple transition rules go between same 2 states
- Draw just one edge
- With label = concatenation of all symbols from rules
- Start State: state FA is to be in when it is turned on
- Specified by an edge with no source
- Accepting State: when entered, outputs "yes"
- Double circle around state
- FA "accepts" or "rejects only when last input processed
- Deterministic Finite Automata (DFA): Exactly one transition rule defined for each combination of state and input
- Nondeterministic Finite Automata (NDFA): (next class)
- More than 1 rule possible per state \& input
- But only one taken at a time
- Which will be discussed later
- P. 33: Transition table D:
- 1 column for each possible input symbol
- 1 row for each possible state
- Contents of a cell of D: next state
- DFA Examples:
- P. 32-33 has transition table
- P. 32 has state diagram with start and accepting states
- (p. 36) Ex. 1.6 M_{1} : (Figs. 1.4 \& 1.6) accepts any string with an even number of 0 's after the last 1 (where no $0 s$ is an even number)
- P. 35. Formal Definition of a FA M is a 5-tuple ($\left.Q, \sum, \delta, q_{0}, F\right)$
- Q: finite set of states
- Σ : finite set of symbols called alphabet
- $\delta: Q \times \sum->Q$ called transition function
- domain is pair of current_state and Current_input
- range is from Q (new_state)
- $q_{0} \varepsilon Q$ designated as start state
- $F \subseteq Q$ is set of accepting states
- P. 40 Formal Definition of a Computation:
- Given "machine" $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$
- And $w=w_{1} w_{2} \ldots w_{n}$ a string from Σ
- M accepts w if w causes a sequence of $n+1$ states r_{0}, r_{1}, \ldots
$r_{i}, r_{i+1}, \ldots r_{n}$
- $r_{0}=q_{0}$,
- $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for $i=0$ to $n-1$
- $r_{n} \varepsilon F$ (key -in an accepting state after last input)
- M recognizes language A if
- A is a language over \sum (i.e. A is a subset of \sum^{*})
- For all strings win A, M accepts w
- For all strings w not in A, M does not accept w
- Examples of machines that recognize languages
- (p. 36) Ex. 1.7 M_{2} : end in " 1 "
- (p. 38) Ex $1.9 \mathrm{M}_{3}$: either empty or end with a " 0 "
- (p. 38) Ex $1.11 \mathrm{M}_{4}$: start or end with " a ", or " b "
- (p. 39) Ex $1.13 \mathrm{M}_{5}$: sum of inputs after a reset $=0 \bmod 3$
- (p. 40) Ex $1.15 \mathrm{M}_{6}$: sum of inputs after a reset $=0 \mathrm{mod} \mathrm{i}$
- P. 41-43 - tips for designing FAs

