
1

Chap 1.1 – Finite Automata

 Automata: (Greek for “self-acting”) Device that

 Performs its actions at (usually fixed) periodic

intervals (Called a Clock)

 With the change to the next interval called a tick

 Accepts strings of input data one per tick

 Optionally generates an output one per tick

 Can be associated with either state or edge

 Carries over memory of the state of its computation

from tick to tick

 Follows a stored set of transition rules that

determines for each input & current state:

 what is new state, what is output

 State:

 Dictionary: particular condition that something is in at a

specific time

 For automata: Sum total of all information about

computation that may affect what it does next

 Corresponds to “memory”

 Example: p. 32 – automatic door opener

2

 (p. 35) Finite Automata (FA) a.k.a Finite State Machine

 Number of different states that system can be in is fixed

 Equivalent to a finite (and small) amount of memory

 Transition rules can only specify from one of these states

to another

 For now only one kind of output: “Yes” or “No”

 Alternatively “Accept” or “Reject”

 P. 34. State Diagram: Graph representation of a FA

 One “labelled vertex” per state

 Label is name of state

 “Labelled Edge” represents a transition rule

 Source vertex is state FA is in before a tick

 Edge label is symbol that was on input

 Target vertex is state the FA goes into next

 If multiple transition rules go between same 2 states

 Draw just one edge

 With label = concatenation of all symbols from rules

 Start State: state FA is to be in when it is turned on

 Specified by an edge with no source

 Accepting State: when entered, outputs “yes”

 Double circle around state

 FA “accepts” or “rejects only when last input processed

3

 Deterministic Finite Automata (DFA): Exactly one transition

rule defined for each combination of state and input

 Nondeterministic Finite Automata (NDFA): (next class)

 More than 1 rule possible per state & input

 But only one taken at a time

 Which will be discussed later

 P. 33: Transition table D:

 1 column for each possible input symbol

 1 row for each possible state

 Contents of a cell of D: next state

 DFA Examples:

 P. 32-33 has transition table

 P. 32 has state diagram with start and accepting states

 (p. 36) Ex. 1.6 M1: (Figs. 1.4 & 1.6) accepts any string with

an even number of 0’s after the last 1 (where no 0s is an

even number)

4

 P. 35. Formal Definition of a FA M is a 5-tuple (Q, ∑, δ, q0, F)

 Q: finite set of states

 ∑: finite set of symbols called alphabet

 δ: Q x ∑ -> Q called transition function

 domain is pair of current_state and Current_input

 range is from Q (new_state)

 q0 ε Q designated as start state

 F ⊆ Q is set of accepting states

 P. 40 Formal Definition of a Computation:

 Given “machine” M = (Q, ∑, δ, q0, F)

 And w = w1w2 …wn a string from ∑

 M accepts w if w causes a sequence of n+1 states r0, r1, …

ri, ri+1, …rn

 r0 = q0,

 δ(ri, wi+1) = ri+1 for i = 0 to n-1

 rn ε F (key – in an accepting state after last input)

 M recognizes language A if

 A is a language over ∑ (i.e. A is a subset of ∑*)

 For all strings w in A, M accepts w

 For all strings w not in A, M does not accept w

5

 Examples of machines that recognize languages

 (p. 36) Ex. 1.7 M2: end in “1”

 (p. 38) Ex 1.9 M3: either empty or end with a “0”

 (p. 38) Ex 1.11 M4: start or end with “a”, or “b”

 (p. 39) Ex 1.13 M5: sum of inputs after a reset = 0 mod 3

 (p. 40) Ex 1.15 M6: sum of inputs after a reset = 0 mod i

 P. 41-43 – tips for designing FAs

