Chap. 1.2 NonDeterministic Finite Automata (NFA)

- **DFAs**: exactly 1 new state for any state & next char
- **NFA**: machine may not work “same” each time
 - More than 1 transition rule for same state & input
 - Any one is valid
 - Choice is made with “crystal ball” – which one will lead to an accepting state if possible
 - Also ε (the empty string) is allowed on an edge:
 - State transition can be made without reading any input characters
- See page 48 Fig. 1.27. two “1s” from q₁ & ε on q₂→q₃
 - Accepts all strings from {0,1}* containing 101 or 11
- **How does computation proceed?** Assume at a step where multiple options are possible – a separate copy of the NFA is started up for each, and run in parallel
 - All with the same starting state and remaining input
 - Each takes a different edge
 - Acceptance if any end up in an accepting state
- See page 49 – note a “1” from q₁ can go to q₂ or (because of ε leaving q2) go to q₃
• Ways to think of nondeterminism
 • Parallel threads checking different paths
 • Tree of possibilities
 • NFA always “guesses” correctly (crystal ball)
• Examples
 • (p.51) Ex. 1.30 N₂: a “1” in third position from end
 • Nondeterminism is knowing when we are 3 symbols from end
 • (p.52) Ex. 1.33 N₃: 0ᵏ, where k is multiple of 2 or 3
 • ε edges lead to two different DFAs
 • One that accepts strings of two 0s
 • One that accepts strings of 3 0s
 • At start, crystal ball “knows” which it is
 • (p.53) Ex. 1.35 N₄: { ε, a, bb, babba, ...}
• **(p.53) NFA Formal Definition**: \(N = (Q, \Sigma, \delta, q_0, F) \)
 - \(Q, \Sigma, q_0, \text{ and } F \) are all as before
 - \(\delta: Q \times \Sigma_\epsilon \rightarrow P(Q) \)
 - \(\Sigma_\epsilon = \Sigma \cup \{\epsilon\} \) – epsilon-extended alphabet
 - \(P(Q) \) is the power set of \(Q \) – set of all subsets of \(Q \)
 - Thus each member of \(P(Q) \) is a subset of \(Q \)
 - \(N \) **accepts** \(w \) (\(w \) a string from \(\Sigma^* \)) if
 - \(w = y_1y_2 \ldots y_m \) where \(y_i \in \Sigma_\epsilon \) (i.e. some may be “\(\epsilon \)”)
 - there exists a sequence of states \(r_0, r_1, \ldots r_m \) where
 - \(r_0 = q_0, r_m \in F \)
 - \(r_{i+1} \in \delta(r_i, y_{i+1}) \)
 - p. 54: e.g. \(N_1 \) accepts all strings containing 101 or 11
 - Look at transition table – each transition is to a set of states
 - Remember \(\phi \) is “empty set”
• (p.55) Theorem **Every NFA has an equivalent DFA.**

• **Proof by construction:** given NFA, build matching DFA

• Basic idea: matching DFA has one state for *every possible set of states* that NFA can be in at any time

 • Assume given NFA \(N = (Q, \Sigma, \delta, q_0, F) \)

 • Build DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

 • Simple case first, if *no \(\epsilon \) rules in N*

 • \(Q' = P(Q) \)

 • \(q_0' = \{q_0\} \)

 • \(F' = \{R \mid R \in Q', R \text{ contains an accept state from } F\} \)

 • for each \(R \in Q' \), and \(a \) in \(\Sigma \):

 • \(\delta'(R, a) = \{q \mid q \in Q, \text{ for some } r \in R, \delta(r, a) = q\} \)

 • Note: \(\delta'(R, a) \) can return empty set \(\varnothing \)

 • If there are \(\epsilon \) rules in \(N \): i.e. some \(\delta(q, \epsilon) -> q' \)

 • Define for any \(R \in Q' \), \(E(R) = \{q \mid q \in Q, q \text{ can be reached from some } q' \text{ in } R \text{ via } 0 \text{ or more } \epsilon \text{ edges}\} \)

 • \(E(R) = \text{“\(\epsilon \) reachable states” from } R \text{ in } 0 \text{ or more } \epsilon \)

 • Now \(\delta'(R, a) = \{q \mid q \in Q, \text{ for some } r \in R, q \in E(\delta(r, a))\} \)

 • Also \(q_0' = E(\{q_0\}) \)

 • If NFA has \(|Q| \) states, DFA has up to \(2^{|Q|} \) states

• **KEY RESULT: NFAs are no more powerful than DFAs!**

 • Just easier to design
• Example 1.41: p. 56 convert NFA N₄ to DFA D
 • Q = {1, 2, 3} – states of N₄
 • P(Q) = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
 • Each represents a possible state of D
 • Compute E - states reachable by ε - of each state of Q′
 • E({1}) = {1, 3} – 3 because of ε from 1 to 3
 • E({2}) = {2} – no ε from 2
 • E({3}) = {3}
 • E({1, 2}) = {1, 2, 3}
 • E({1, 3}) = {1, 3}
 • E({2, 3}) = {2, 3}
 • E({1, 2, 3}) = {1, 2, 3}
 • Start state is E of N₄’s start state 1 = E({1}) = {1, 3}
 • Accept states are those containing any of N₄’s F states ({{1}}
 • {{1}, {1, 2}, {1, 3}, {1, 2, 3}}
 • See Fig. 1.43 p. 58
 • Note no edges into {1} or {1, 2} so could eliminate
 • See Fig. 1.44 for reduced graph
• Transitions
 • \{2\} in D
 • input a: \{2,3\} because N has a edge from 2 to 2 & 3
 • input b: \{3\}
 • \{1\} in D
 • input a: \emptyset because no a’s leave 1 in N
 • input b: \{2\} because b edge from 1 to 2 in N
 • \{3\} in D
 • input a: \{1,3\} because in N a edge from 3 to 1
 • but also from 1 there’s an \(\varepsilon\) edge back to 3
 • input b: \emptyset because no a’s leave 3 in N
 • \{1,2\} in D
 • input a: \{2,3\} while 1 has no a edges, 2 does to \{2,3\}
 • input b: \{2,3\} N has a b edge from 1 to 2
 • and a b edge from 2 to 3
 • \{1,3\} in D
 • input a: \{1,3\} while 1 has no a edges,
 • from 3 there is a edge to 1, with an \(\varepsilon\) back to 3
 • input b: \{2\} N has a b edge from 1 to 2
 • but no b edges from 3
 • \{2,3\} in D
 • input a: \{1,2,3\} a edge from 2 to 2,
 • from 3 there is a edge to 1, with an \(\varepsilon\) back to 3
 • input b: \{3\} N has a b edge from 2 to 3
 • but no b edges from 3
 • \{1,2,3\} in D
 • input a: \{1,2,3\} no a edges from 1
 • but a edge from 2 to 2 and 3
 • from 3 there is a edge to 1, with an \(\varepsilon\) back to 3
 • input b: \{2,3\} N has a b edge from 1 to 2
 • and b edge from 2 to 3
• Alternative from transition table
• N’s original transition table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>ε</th>
<th>E(state)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{}</td>
<td>{2}</td>
<td>{3}</td>
<td>{1,3}</td>
</tr>
<tr>
<td>2</td>
<td>{2,3}</td>
<td>{3}</td>
<td>{}</td>
<td>{2}</td>
</tr>
<tr>
<td>3</td>
<td>{1}</td>
<td>{}</td>
<td>{}</td>
<td>{3}</td>
</tr>
</tbody>
</table>

• D’s Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>E({}) = {}</td>
<td>E(2) = {2}</td>
</tr>
<tr>
<td>{2}</td>
<td>E(2) U E(3) = {2} U {3}={2,3}</td>
<td>E(3) = {3}</td>
</tr>
<tr>
<td>{3}</td>
<td>E(1) = {1,3}</td>
<td>E({}) = {}</td>
</tr>
<tr>
<td>{[1,2]}</td>
<td>E({}) U E(2) U E(3) = {2,3}</td>
<td>E(2) U E(3) = {2,3}</td>
</tr>
<tr>
<td>->{1,3}</td>
<td>E(1) = {1,3}</td>
<td>E(2) U E({}) = {2}</td>
</tr>
<tr>
<td>{2,3}</td>
<td>E(1) U E(2) U E(3) = {1,2,3}</td>
<td>E(3) = {3}</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>E(1) U E(2) U E(3) = {1,2,3}</td>
<td>E(2) U E(3) = {2,3}</td>
</tr>
<tr>
<td>{}</td>
<td>E({}) = {}</td>
<td>E({}) = {}</td>
</tr>
</tbody>
</table>

• To E’s that contain 1 in state, add 3 because of ε 1->3
• Each cell δ(q’,x) is Union of E(δ(q,x)) where q is in set q’
• Red states are in D’s final set
• {1,3} is D’s start state because its E(1) where 1 is N’s state