Chap. 1.2 NonDeterministic Finite Automata (NFA)

- DFAs: exactly 1 new state for any state & next char
- NFA: machine may not work "same" each time
 - More than 1 transition rule for same state & input
 - Any one is valid
 - Choice is made with "crystal ball" which one will lead to an accepting state if possible
 - Also ε (the empty string) is allowed on an edge:
 - State transition can be made without reading any input characters
 - See page 48 Fig. 1.27. two "1s" from $q_1 \& \varepsilon$ on $q_2 -> q_3$
 - Accepts all strings from {0,1}* containing 101 or 11
- How does computation proceed? Assume at a step where multiple options are possible – a separate copy of the NFA is started up for each, and run in parallel
 - All with the same starting state and remaining input
 - Each takes a different edge
 - Acceptance if <u>any</u> end up in an accepting state
 - See page 49 note a "1" from q1 can go to q2 or (because of ε leaving q2) go to q3

- Ways to think of nondeterminism
 - Parallel threads checking different paths
 - Tree of possibilities
 - NFA always "guesses" correctly (crystal ball)
- Examples
 - (p.51) Ex. 1.30 N₂: a "1" in third position from end
 - Nondeterminism is knowing when we are 3 symbols from end
 - (p.52) Ex. 1.33 N_3 : 0^k , where k is multiple of 2 or 3
 - ε edges lead to two different DFAs
 - One that accepts strings of two 0s
 - One that accepts strings of 3 0s
 - At start, crystal ball "knows" which it is
 - (p.53) Ex. 1.35 N₄: { ε, a, bb, babba, ...}

- (p.53) NFA Formal Definition: $N = (Q, \sum, \delta, q0, F)$
 - Q, Σ, q0, and F are all as before
 - δ : Q x Σ_{ε} -> P(Q)
 - $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ epsilon-extended alphabet
 - P(Q) is the power set of Q − set of all subsets of Q
 - Thus each member of P(Q) is a subset of Q
- N accepts w (w a string from Σ*) if
 - $w = y_1y_2 ... y_m$ where $y_i \in \Sigma_{\varepsilon}$ (i.e. some may be " ε ")
 - there exists a sequence of states r₀, r₁, ... r_m where
 - $r_0 = q0, r_m \in F$
 - $r_{i+1} \in \delta(r_i, y_{i+1})$
- p. 54: e.g. N₁ accepts all strings containing 101 or 11
 - Look at transition table each transition is to a set of states
 - Remember φ is "empty set"

- (p.55) Theorem **Every NFA** has an equivalent DFA.
- Proof by construction: given NFA, build matching DFA
- Basic idea: matching DFA has one state for every possible set of states that NFA can be in at any time
 - Assume given NFA N = (Q, Σ , δ , q0, F)
 - Build DFA M = $(Q', \sum, \delta', qO', F')$
 - Simple case first, if no ε rules in N
 - Q' = P(Q)
 - $q0' = \{q0\}$
 - F' = {R | R ε Q', R contains an accept state from F)
 - for each R ε Q', and a in Σ:
 - $\delta'(R, a) = \{q \mid q \in Q, \text{ for some r in } R, \delta(r,a) = q\}$
 - Note: δ'(R, a) can return empty set φ
 - If there are ε rules in N: i.e. some $\delta(q, \varepsilon) \rightarrow q'$
 - Define for any RεQ', E(R) = {q|q ε Q, q can be reached from some q' in R via 0 or more ε edges}
 - $E(R) = \text{"}\epsilon \text{ reachable states" from R in 0 or more }\epsilon$
 - Now $\delta'(R, a) = \{q \mid q \text{ in } Q, \text{ for some } r \text{ in } R, q \text{ in } E(\delta(r,a))\}$
 - Also $q0' = E(\{q0\})$
- If NFA has |Q| states, DFA has up to 2 |Q| states
- KEY RESULT: NFAs are no more powerful than DFAs!
 - Just easier to design

- Example 1.41: p. 56 convert NFA N₄ to DFA D
 - $Q = \{1,2,3\}$ states of N_4
 - P(Q) = {{},{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
 - Each represents a possible state of D
 - Compute E states reachable by ϵ of each state of Q'
 - $E(\{1\}) = \{1,3\} 3$ because of ϵ from 1 to 3
 - $E({2}) = {2} no \epsilon from 2$
 - $E({3}) = {3}$
 - $E(\{1,2\}) = \{1,2,3\}$
 - $E\{\{1,3\}\} = \{1,3\}$
 - $E({2,3}) = {2,3}$
 - $E(\{1,2,3\}) = \{1,2,3\}$
- Start state is E of N₄'s start state 1 = E({1}) = {1,3}
- Accept states are those containing any of N₄'s F states ({1})
 - {{1}, {1,2}, {1,3}, {1,2,3}}
- See Fig. 1.43 p. 58
 - Note no edges into {1} or {1,2} so could eliminate
 - See Fig. 1.44 for reduced graph

Transitions

- {2} in D
 - input a: {2,3} because N has a edge from 2 to 2 & 3
 - input b: {3}
- {1} in D
 - input a: φ because no a's leave 1 in N
 - input b: {2} because b edge from 1 to 2 in N
- {3} in D
 - input a: {1,3} because in N a edge from 3 to 1
 - but also from 1 there's an ε edge back to 3
 - input b: φ because no a's leave 3 in N
- {1,2} in D
 - input a: {2,3} while 1 has no a edges, 2 does to {2,3}
 - input b: {2,3} N has a b edge from 1 to 2
 - and a b edge from 2 to 3
- {1,3} in D
 - input a: {1, 3} while 1 has no a edges,
 - from 3 there is a edge to 1, with an ε back to 3
 - input b: {2} N has a b edge from 1 to 2
 - but no b edges from 3
- {2,3} in D
 - input a: {1, 2, 3} a edge from 2 to 2,
 - from 3 there is a edge to 1, with an ε back to 3
 - input b: {3} N has a b edge from 2 to 3
 - but no b edges from 3
- {1,2,3} in D
 - input a: {1, 2, 3} no a edges from 1
 - but a edge from 2 to 2 and 3
 - from 3 there is a edge to 1, with an ε back to 3
 - input b: {2,3} N has a b edge from 1 to 2
 - and b edge from 2 to 3

- Alternative from transition table
- N's original transition table:

State	а	b	ε	E(state)
1	{}	{2}	{3}	{1,3}
2	{2,3}	{3}	{}	{2}
3	{1}	{}	{}	{3}

• D's Transition Table

State	а	b	
{1 }	$E(\{\}) = \{\}$	E(2) = {2}	
{2}	$E(2)UE(3) = {2}U{3}={2,3}$	$E(3) = \{3\}$	
{3}	$E(1) = \{1,3\}$	$E(\{\}) = \{\}$	
{1,2 }	$E({}) U E({}) U E({}) = {}2,3{}$	$E(2) \cup E(3) = \{2,3\}$	
-> <mark>{1,3}</mark>	$E(1) = \{1,3\}$	$E(2) \cup E({}) = {2}$	
{2,3}	$E(1) \cup E(2) \cup E(3) = \{1,2,3\}$	$E(3) = \{3\}$	
{1,2,3 }	$E(1) \cup E(2) \cup E(3) = \{1,2,3\}$	E(2) U E(3) = {2,3}	
{}	$E(\{\}) = \{\}$	$E(\{\}) = \{\}$	

- To E's that contain 1 in state, add 3 because of ε 1->3
- Each cell $\delta'(q',x)$ is Union of $E(\delta(q,x))$ where q is in set q'
- Red states are in D's final set
- {1,3} is D's start state because its E(1) where 1 is N's state