Chap. 1.2 NonDeterministic Finite Automata (NFA)

e DFAs: exactly 1 new state for any state & next char

e NFA: machine may not work “same” each time
e More than 1 transition rule for same state & input

e Any one is valid
e Choice is made with “crystal ball” — which one will
lead to an accepting state if possible
e Also £ (the empty string) is allowed on an edge:

e State transition can be made without reading any
input characters
e See page 48 Fig. 1.27. two “1s” from q; & € on q;->Q3
e Accepts all strings from {0,1}* containing 101 or 11
e How does computation proceed? Assume at a step
where multiple options are possible — a separate copy
of the NFA is started up for each, and run in parallel
e All with the same starting state and remaining input
e Each takes a different edge
e Acceptance if any end up in an accepting state
e See page 49 —note a “1” from gl can go to g2 or
(because of € leaving q2) go to g3
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e \Ways to think of nondeterminism
e Parallel threads checking different paths
e Tree of possibilities
e NFA always “guesses” correctly (crystal ball)
e Examples
® (p.51) Ex. 1.30 N,: a “1” in third position from end
e Nondeterminism is knowing when we are 3
symbols from end
e (p.52) Ex. 1.33 Nas: 0 where k is multiple of 2 or 3
e £ edges lead to two different DFAs
e One that accepts strings of two Os
e One that accepts strings of 3 Os
e At start, crystal ball “knows” which it is
e (p.53) Ex. 1.35 N4: { &, a, bb, babba, ...}



e (p.53) NFA Formal Definition: N=(Q, 3, 6, 90, F)
e Q, 2, q0, and F are all as before
e 6:Qx2.->P(Q)
e 3. =2 U {e}—epsilon-extended alphabet
e P(Q) is the power set of Q — set of all subsets of Q
e Thus each member of P(Q) is a subset of Q
e N accepts w (w a string from 2*) if
® W =V1Y; .. Ym Wherey; € 2. (i.e. some may be “£”)
e there exists a sequence of states ry, ry, ... ry Where
®rp=q0, rmeF
® ri.1 € 0(r;, Yisn)
e p. 54: e.g. N; accepts all strings containing 101 or 11
e Look at transition table — each transition is to a set of
states
e Remember ¢ is “empty set”



e (p.55) Theorem Every NFA has an equivalent DFA.

e Proof by construction: given NFA, build matching DFA

e Basic idea: matching DFA has one state for every
possible set of states that NFA can be in at any time
e Assume given NFAN=(Q, 5, 6, q0, F)
e Build DFAM=(Q/, 3, &, q0’, F')
e Simple case first, if no € rulesin N

e Q' =P(Q)

e g0’ = {q0}

e FF={R| Re @, R contains an accept state from F)

e foreachReQ’,andain2:
e §'(R,a)={g|geQ, forsomerinR, 6(r,a)=q}
e Note: 6'(R, a) can return empty set ¢
e Ifthere are e rulesin N:i.e. some §(q, €) -> ¢’
e Define for any ReQ’/, E(R) ={q|q € Q, g can be reached
from some q’ in R via O or more € edges}

e E(R) = “e reachable states” from R in O or more €
e Now &’'(R,a) ={g|qgin Q, forsomerinR, gqin E(&(r,a))}
e Also q0’ = E({g0})
e |f NFA has |Q| states, DFA has up to 219 states
e KEY RESULT: NFAs are no more powerful than DFAs!
e Just easier to design



e Example 1.41: p. 56 convert NFA N, to DFA D
e Q={1,2,3}—states of N,
e P(Q) ={{}{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
e Each represents a possible state of D
e Compute E - states reachable by € - of each state of Q’
e E({1}) ={1,3} -3 because of e from 1to 3
e E({2}) ={2}—no € from 2
e E({3})=1{3}
e E({1,2}) =1{1,2,3}
e E{{1,3})={1,3}
o E({2,3}) ={2,3}
e E({1,2,3}) ={1,2,3}
e Start stateis E of N,’s start state 1 = E({1}) = {1,3}
e Accept states are those containing any of N,’s F states ({1})
o {{1},{1,2},{1,3}, {1,2,3}}
e See Fig.1.43 p. 58
e Note no edgesinto {1} or {1,2} so could eliminate
e See Fig. 1.44 for reduced graph



e Transitions

e {2}inD
e input a: {2,3} because N has a edge from 2to 2 & 3
e input b: {3}
e {1}inD
e inputa: ¢ because noa’sleavelinN
e input b: {2} because b edge from1to 2in N
e {3}inD
e inputa:{1,3} becausein N a edge from3to1l
e but also from 1 there’s an € edge back to 3
e input b: ¢ because noa’sleave 3in N
e {1,2}inD
e input a: {2,3} while 1 has no a edges, 2 does to {2,3}
e inputb:{2,3} N hasab edgefrom1lto2
e and ab edge from2to3
e {1,3}inD
e inputa: {1, 3} while 1 has no a edges,
e from 3 thereis a edge to 1, with an € back to 3
e inputb: {2} N hasab edge from1to2
e but no b edges from 3
e {2,3}inD
e inputa:{1,2,3}aedge from2to?2,
e from 3 thereis a edge to 1, with an € back to 3
e inputb: {3} Nhasabedgefrom2to3
e but no b edges from 3
e {1,2,3}inD
e inputa:{1, 2, 3} noaedgesfrom1l
e butaedgefrom2to2and3
e from 3 thereis a edge to 1, with an € back to 3
e inputb:{2,3} N hasab edgefrom1lto2
e and b edge from2to3



e Alternative from transition table

e N’s original transition table:

State a b € E(state)
1 {} {2} {3} {1,3}
2 {2,3} {3} {} {2}
3 {1} {} {} {3}
e D’s Transition Table
State a b
{1} E({}) = {) E(2) = {2}
{2} E(2)UE(3) = {2}U{3}={2,3} E(3) = {3}
{3} E(1) ={1,3} E({}) = {}
E({}) U E(2) U E(3) = {2,3} E(2) U E(3) = {2,3}
1 E(1) ={1,3} E(2) U E({}) = {2}
2,3} | E(1) UE(2) UE(3)={1,2,3} E(3) = {3}
B £(1)UEQ)UEEB)={1,2,3} E(2) U E(3) = {2,3}
{} E({}) = {} E({}) = {}

e To E’s that contain 1 in state, add 3 because of € 1->3

e Each cell 8’(q’,x) is Union of E(6(q,x)) where q is in set g’

e Red states are in D’s final set

e {1,3}is D’s start state because its E(1) where 1 is N’s state




