Sec. 1.4 (pp. 77-81). **Nonregular Languages**

- Not all languages are regular (i.e. not all recognizable by some FA or expressible as a regex)
 - Consider $B = \{0^n1^n | n \geq 0\}$
 - Need to “remember n” when we see 01 transition
 - But no way to count to an arbitrarily large number
- $C = \{w | w$ has equal # 0s and 1s$\}$ also not regular
 - Again have to “count”
- However, $D = \{w | w$ has equal # of 01 and 10 substrings$\}$ is regular (see Prob. 1.48)
• How to show some languages non-regular?
• Observation: If the set of strings L is infinite & regular
 • Then matching regex must have at least one “*” or “+”
 • I.e. R_xR_y*R_z where R_x, R_y, R_z all smaller regexs
 • E.g. L = ac (bb U aa)* ca
 • acbbca is in L
 • but so is acca, acbbbbca, acbbbbbbca, ……
 • i.e. there are an infinite number of strings of the form
 ac(bb)^n ca for all n≥0 also in L!
 • In general (with caveats) if w is in L, there is some w=xyz
 so that for all n, so is xy^n z
 • So in general if we find one string we know is in L
 • Then an infinite number of other strings also in L
• Why is this useful? Assume want to show L is NOT regular
 • Proof by contradiction: Assume L IS regular
 • Find a string w known to be in L
 • Look at all possible ways of dividing into w=xyz
 • x from some R_x, y from some R_y, z from some R_z
 • In each case show for some k, xy^k z is not in L
 • Contradiction! Assumption that L is regular is FALSE
 • Thus L cannot be a regular language
• (p. 78) **PUMPING LEMMA.** If A is regular, then
 • There is some number p (called the **pumping length**)
 • Where if s is any string in A whose length $\geq p$
 • **Then s can be divided somehow into 3 pieces** $s = xyz$
 • $|y| > 0$, (i.e. y cannot be ε)
 • $|xy| \leq p$, (note either x or y or both may be ε)
 • **For any $i \geq 0$, then xy^iz is also in A**
• What this means: If L is regular language of infinite size
 • L has associated with it some string length p
 • Such that if you take any string w from L where $|w| \geq p$
 • Then you can always write w as concatenation $w = xyz$
 for some strings x, y, and z (i.e. at least one)
 • Such that the strings xz, xyz, $xyyz$, $xxyyz$, ... xy^iz all in L
 • Note: finite languages cannot be pumped
• Example: \{ade, abcde, abcabcde, ...\}
 • Regex = $a(bc)*de$
 • GNFA equivalent has 3 states
 • $p=4$, $x=a$, $y=bc$, $z=de$
 • Easiest to see the y in a DFA loop, or “*” in the regex
• What this means: If **L is not regular**, then L **does not obey** the pumping lemma
• Can use pumping lemma in a **proof by contradiction** to show language is not regular
 • Assume L **is** regular
 • Then there must exist **some** p (we don’t need to know exact value)
 • Show that there is **always** some string w in L, |w| ≥ p, that **cannot be pumped**, regardless of how we partition it into some xyz
 • Need find **ONLY ONE SUCH STRING**
• Thus assumption is false and L not regular
• (p. 78) Proof in outline:
 • Assume \(M = (Q, \Sigma, \delta, q_1, F) \) accepts \(A \)
 • Assume \(p = \) \# of states in \(M \)
 • \(Q = \{q_1, q_2, \ldots, q_p\} \)
 • If no string in \(A \) is \(\geq p \), then theorem obviously true
 • Assume \(s = s_1s_2 \ldots s_n \), \(n \geq p \) (\(n \) is \# of characters in string)
 • Then state sequence must be \((r_0, r_1, \ldots, r_n) \) (see fig. 1.72)
 • where \(r_0 = q_1 \)
 • and \(\delta(r_{i-1}, s_i) = r_i \)
 • But since \(n \geq p \), then \(n+1 > p \)
 • But since only \(p \) states, we must have \textit{repeated} \(n+1-p \) states
 • Assume \(r_j \) is 1st state that is repeated
 • \(s_{j+1} \) is 1st character to cause leaving \(r_j \)
 • Also assume \(s_k \) is 1st character that causes re-entry to state \(r_j \)
 • Since we are back at \(r_j \), we could repeat \(s_{j+1} \ldots s_k \) forever
 • The substring \(s_{j+1} \ldots s_k \) is thus \(y \)
 • We could keep repeating \(s_{j+1} \ldots s_k \) arbitrarily often and still end up at \(r_j \) – i.e. \((s_{j+1} \ldots s_k)^i \) for \(i \geq 0 \)
 • And \(x = s_1s_2 \ldots s_j \), \(z = s_{k+1} \ldots s_n \),
 • Either/both \(x \) and \(z \) could be \(\epsilon \)
• Use lemma to show B not regular – by contradiction
 • Assume B regular
 • Thus there is some p such that all strings of length ≥ p can be pumped
 • Find a string s in B that is ≥ p, but cannot be pumped
 • Look at all possible ways to divide string into xyz
 • For each way find an i such that xy^i z not in B
 • When found, we have a contradiction!
 • Thus B is NOT regular

• Examples
 • P.80: B = \{0^n1^n | n ≥ 0\}
 • Look at 3 cases of substrings: all 0s, ..01.., all 1s
 • P.80: C = \{w | w has equal # of 0’s and 1s\}
 • Look at s = 0^p1^p
 • P.81: F = \{ww | w in \{0,1\}^*\}
 • Look at s = 0^p10^p1
 • P.82: D = \{1^{n^2} | n ≥ 0\}
 • Look at s = 1^{p^2}
 • P. 82: E = \{0^i1^j | i > j\}
 • Look at s = 0^{p+1}1^p

• Also look at problems 1.53-1.58