Sec. 1.4 (pp. 77-81). Nonregular Languages

- Not all languages are regular (i.e. not all recognizable by some FA or expressible as a regex)
 - Consider $B = \{0^n 1^n | n \ge 0\}$
 - Need to "remember n" when we see 01 transition
 - But no way to count to an arbitrarily large number
 - C = {w | w has equal # 0s and 1s} also not regular
 - Again have to "count"
 - However, D = {w|w has equal # of 01 and 10 substrings} is regular (see Prob. 1.48)

- How to show some languages non-regular?
- Observation: If the set of strings L is infinite & reguler
 - Then matching regex must have at least one "*" or "+"
 - I.e. $R_x R_y * R_z$ where R_x , R_y , R_z all smaller regexs
 - E.g .L = ac (bb U aa)* ca
 - acbbca is in L
 - but so is acca, acbbbbca, acbbbbbca,
 - i.e. there are an infinite number of strings of the form ac(bb)ⁿca for all n≥0 <u>also in L</u>!
 - In general (with caveats) if w is in L, there is some w=xyz so that for all n, so is xyⁿz
 - So in general if we find one string we know is in L
 - Then an infinite number of other strings also in L
- Why is this useful? Assume want to show L is NOT regular
 - Proof by contradiction: Assume L IS regular
 - Find a string w known to be in L
 - Look at all possible ways of dividing into w=xyz
 - x from some R_x, y from some R_v, z from some R_z
 - In each case show for some k, xy^kz is not in L
 - Contradiction! Assumption that L is regular is FALSE
 - Thus L cannot be a regular language

- (p. 78) **PUMPING LEMMA**. If A is regular, then
 - There is some number <u>p</u> (called the <u>pumping length</u>)
 - Where if s is any string in A whose length ≥ p
 - Then s can be divided <u>somehow</u> into <u>3 pieces</u> s= xyz
 - |y| > 0, (i.e. y cannot be ε)
 - $|xy| \le p$, (note either x or y or both may be ε)
 - For any i≥0, then xyⁱz is also in A
- What this means: If L is regular language of infinite size
 - L has associated with it some string length p
 - Such that if you take any string w from L where |w|≥ p
 - Then you can always write w as concatenation w = xyz for some strings x, y, and z (i.e. at least one)
 - Such that the strings xz, xyz, xyyz, xyyyz, ... xyⁱz all in L
 - Note: finite languages cannot be pumped
 - Example: {ade, abcde, abcbcde, ...}
 - Regex = a(bc)*de
 - GNFA equivalent has 3 states
 - p=4, x=a, y=bc, z=de
 - Easiest to see the y in a DFA loop, or "*" in the regex

- What this means: If <u>L is not regular</u>, then L does not obey the pumping lemma
 - Can use pumping lemma in a proof by contradiction to show language is not regular
 - Assume L is regular
 - Then there must exist some p (we don't need to know exact value)
 - Show that there is <u>always</u> some string w in L, |w|≥p, that <u>cannot be pumped, regardless of how we partition</u> <u>it into some xyz</u>
 - Need find ONLY ONE SUCH STRING
 - Thus assumption is false and L not regular

- (p. 78) Proof in outline:
 - Assume M = $(Q, \Sigma, q_1, \delta, F)$ accepts A
 - Assume p = # of states in M
 - $Q = \{q_1, q_2, ..., q_p\}$
 - If no string in A is ≥ p, then theorem obviously true
 - Assume $s = s_1 s_2 ... s_n$, $n \ge p$ (n is # of characters in string)
 - Then state sequence must be $(r_0, r_1, ..., r_n)$ (see fig. 1.72)
 - where $r_0 = q_1$
 - and $\delta(r_{i-1}, s_i) = r_i$
 - But since $n \ge p$, then n+1 > p
 - But since only p states, we must have <u>repeated</u> n+1-p states
 - Assume r_j is 1st state that is repeated
 - s_{j+1} is 1^{st} character to cause leaving r_j
 - ullet Also assume s_k is $\mathbf{1}^{st}$ character that causes re-entry to state r_j
 - Since we are back at r_i , we could repeat $s_{i+1} \dots s_k$ forever
 - The substring s_{j+1} ... s_k is thus y
 - We could keep repeating $s_{ij+1} \dots s_k$ arbitrarily often and still end up at $r_i i.e. (s_{ij+1} \dots s_k)^i$ for $i \ge 0$
 - And $x = s_1 s_2 ... s_j$, $z = s_{k+1} ... s_n$,
 - Either/both x and z could be ε

- Use lemma to show B not regular by contradiction
 - Assume B regular
 - Thus there is some p such that all strings of length ≥ p can be pumped
 - Find a string s in B that is ≥ p, but cannot be pumped
 - Look at all possible ways to divide string into xyz
 - For each way find an i such that xyⁱz not in B
 - When found, we have a contradiction!
 - Thus B is NOT regular
- Examples
 - P.80: B = $\{0^n 1^n | n \ge 0\}$
 - Look at 3 cases of substrings: all 0s, ..01.., all 1s
 - P.80: C = {w | w has equal # of 0's and 1s}
 - Look at $s = 0^p 1^p$
 - P.81: F = {ww| w in {0,1}*}
 - Look at $s = 0^p 10^p 1$
 - P.82: D = $\{1^{n^2} \mid n \ge 0\}$
 - Look at $s = 1^{p^2}$
 - P. 82: $E = \{0^i 1^j | i > j\}$
 - Look at $s = 0^{p+1}1^p$
- Also look at problems 1.53-1.58