Sec. 1.4 (pp. 77-81). **Nonregular Languages**

- Not all languages are regular (i.e. not all recognizable by some FA or expressible as a regex)
 - Consider $B = \{0^n1^n | n \geq 0\}$
 - Need to “remember n” when we see 01 transition
 - But no way to count to an arbitrarily large number
 - $C = \{w | w \text{ has equal } \# \text{ 0s and 1s}\}$ also not regular
 - Again have to “count”
 - However, $D = \{w | w \text{ has equal } \# \text{ of 01 and 10 substrings}\}$ is regular (see Prob. 1.48)
• How to show some languages non-regular?
• Observation: If the set of strings is infinite
 • Then matching regex must have at least one “*” or “+”
 • I.e. $R_xR_y^*R_z$ where R_x, R_y, R_z all smaller regexs
 • E.g. $L = ac (bb \cup aa)^* ca$
 • acbbca is in L
 • but so is acca, acbbbca, acbbbbbbca,
 • i.e. there are an infinite number of strings of the form $ac(bb)^nca$ for all $n \geq 0$ also in L!
 • In general (with caveats) if w is in L, there is some $w=xyz$ so that for all n, so is xy^nz
• So in general if we find one string we know is in L
• Then an infinite number of other strings also in L
• Why is this useful? Assume want to show L is NOT regular
 • Assume L IS regular
 • Find a string w known to be in L
 • Look at all possible ways of dividing into $w=xyz$
 • x from some R_x, y from some R_y, z from some R_z
 • In each case show for some k, xy^kz is not in L
 • Contradiction! Assumption that L is regular is FALSE
• Thus L cannot be a regular language
• (p. 78) **PUMPING LEMMA.** If A is regular, then
 • There is some number \(p \) (called the **pumping length**)
 • Where if \(s \) is any string in A whose length \(\geq p \)
 • Then \(s \) can be divided somehow into **3 pieces** \(s = xyz \)
 • \(|y| > 0 \), (i.e. \(y \) cannot be \(\varepsilon \))
 • \(|xy| \leq p \), (note either \(x \) or \(y \) or both may be \(\varepsilon \))
 • **For any** \(i \geq 0 \), **then** \(xy^i z \) **is also in** A
 • What this means: If **L is regular** language of infinite size
 • \(L \) has associated with it some string length \(p \)
 • Such that if you take **any** string \(w \) from \(L \) where \(|w| \geq p \)
 • Then you can **always** write \(w \) as concatenation \(w = xyz \)
 for some strings \(x, y, \) and \(z \)
 • Such that the strings \(xz, xyz, xyyz, xyyyyz, \ldots xy^i z \) all in \(L \)
 • Note: finite languages cannot be pumped
 • Example: \{ade, abcde, abcabcde, \ldots\}
 • Regex = \(a(bc)^*de \)
 • GNFA equivalent has 3 states
 • \(p=4, x=a, y=bc, z=de \)
 • Easiest to see the \(y \) in a DFA loop, or “*” in the regex
• What this means: If **L is not regular**, then L does not obey the pumping lemma
 • Can use pumping lemma in a **proof by contradiction** to show language is not regular
 • Assume L is regular
 • Then there must exist some p (we don’t need to know exact value)
 • Show that there is **always** some string w in L, |w| ≥ p, that cannot be pumped, regardless of how we partition it into some xyz
 • Need find ONLY ONE SUCH STRING
 • Thus assumption is false and L not regular
• (p. 78) Proof in outline:
 • Assume $M = (Q, \Sigma, q_1, \delta, F)$ accepts A
 • Choose $p = \# \text{ of states in } M$
 • $Q = \{q_1, q_2, \ldots, q_p\}$
 • If no string in A is $\geq p$, then theorem obviously true
 • Assume $s = s_1s_2 \ldots s_n$, $n \geq p$ (n is $\# \text{ of characters in string}$)
 • Then state sequence must be (r_0, r_1, \ldots, r_n) (see fig. 1.72)
 • where $r_0 = q_1$
 • and $\delta(r_{i-1}, s_i) = r_i$
 • But since $n \geq p$, then $n+1 > p$
 • But since only p states, we must have repeated $n+1-p$ states
 • Assume r_j is 1^{st} state that is repeated
 • s_{j+1} is 1^{st} character to cause leaving r_j
 • Also assume s_k is 1^{st} character that causes re-entry to state r_j
 • Since we are back at r_j, we could repeat $s_{j+1} \ldots s_k$ forever
 • The substring $s_{j+1} \ldots s_k$ is thus y
 • We could keep repeating $s_{j+1} \ldots s_k$ arbitrarily often and still end up at r_j – i.e. $(s_{ij+1} \ldots s_k)^i$ for $i \geq 0$
 • And $x = s_1s_2 \ldots s_j$, $z = s_{k+1} \ldots s_n$,
 • Either/both x and z could be ϵ
Use lemma to show B not regular – by contradiction

- Assume B regular
- Thus there is some p such that all strings of length \(\geq p \) can be pumped
- Find a string s in B that is \(\geq p \), but cannot be pumped
 - Look at all possible ways to divide string into xyz
 - For each way find an i such that \(xyz^i \) not in B
- When found, we have a contradiction!
- Thus B is NOT regular

Examples

- P.80: \(B = \{0^n1^n \mid n \geq 0\} \)
 - Look at 3 cases of substrings: all 0s, ..01.., all 1s
- P.80: \(C = \{w \mid w \text{ has equal } \# \text{ of 0's and 1s}\} \)
 - Look at \(s = 0^p1^p \)
- P.81: \(F = \{ww \mid w \text{ in } \{0,1\}^*\} \)
 - Look at \(s = 0^p10^p1 \)
- P.82: \(D = \{1^{n^2} \mid n \geq 0\} \)
 - Look at \(s = 1^{p^2} \)
- P. 82: \(E = \{0^i1^j \mid i>j\} \)
 - Look at \(s = 0^{p+1}1^p \)
- Also look at problems 1.53-1.58