Chap. 1 Regular Languages

Language = set of strings from some alphabet

Language L is accepted by FA M if after last symbol both:

e ForanystringinL, M ends in accept state
e For any string not in L, M does not end in accept-state

Regular Language (RL): any language accepted by a FA

e Also called Regular Expressions (regex)

Question: Is there a way of describing all, and only,
languages accepted by a FA? l.e. is there a syntax for RLs?
e Can we build “larger” languages from “smaller” ones?
Answer to all above: YES

(p.44) Possible set operations on languages A and B:

e Union: AUB = {x | xeA or xeB}

e Intersection: AN A B {x | xeA and x&B}

e Complementation of B wrt A: A/B = {x| xeA and x not in B}
(p.44) Possible operations on strings in languages

e Concatenation: A ° B = {xy |xy a string where xeA and yeB}
e Star: A* = {x|x =€ or x= x1%; ...Xxx Where k>1 and all xeA }

e Plus: A" = { x| x= x1X; ...xx Where k>1 and all x,gA }

P. 45 Examples of above operations on some simple sets

e Fundamental Question: if we apply any of above
operations to known RLs, are we guaranteed to get
another RL?

e Are we guaranteed we can build an FA that accepts result

e Answer: YES if set of RLs is closed under the operation
e Closure: A set is closed under some operation if applying it
to any member(s) of the set returns another member of set
e j.e. can we build a FA (DFA or NFA) that accepts any language
created by applying specified operation
e Typical proof process: by construction
e Assume language Al accepted by FA M1, A2 by M2:
e Show how to build an M (typically using M1 and M2 as

pieces) that accepts all strings from any combination of
sets Al and A2 using that operation
e i.e Set of all RLs is closed under these operations

e Assume following in closure proofs
e Al accepted by DFA M1, and M1 =(Q1, 5, 61, g1, F1)
e A2 accepted by DFA M2, and M2 =(Q2, 5, 62, g2, F1),
e Q1 N Q2=¢ (i.e. no common states)

e We can always “rename” states to prevent confusion

e (p.45,46) Prove closure under U by constructing new DFA M
e Construct M =(Q, 3, 6, 90, F)
e Q=Q1xQ2
e j.e.statesin M are “named” as tuples (rl, r2)
e r1inQl,r2inQ2
e > same for all 3 machines
e 6((r1,r2),a)=(61(r1,a), 62(r2,a))
e q0=(ql, q2)
o F={(r1,r2) | rleF1 or r2eF2}
e New machine keeps track of states of both machines
e If either ends up in their F, then accept
e If neither accept, then reject
e Do example: Al = set of even # of a’s, A2 = odd # of b’s

(p.47) To show we’ve proven closure, must show:

e If wis accepted by either M1 or M2, it is accepted by M
e If wis accepted by M, it is accepted by either M1 or M2
e Both of above are fairly obvious by construction

Proof of closure under intersection is simple: change F!

e Since DFAs=NFAs, L is regular iff accepted by some NFA
e (p. 59-60) Alternative construction proof of U using NFAs
e Al accepted by NFA N1, and N1 =(Q1, 5, 61, q1, F1)
e A2 accepted by NFAN2, and N2 =(Q2, 5, 62, g2, F1),
e Construct N=(Q, 5, 6, q0, F) to recognize A1 U A2
e Q={q0}UQ1UQ2
e F=F1UF2
* 5(q,a) =
=61(g,a)ifqeQl
=062(g,a)ifge Q2
={01,92}ifg=g0anda=¢

e =¢pifg=qg0andaze
e New starting state g0 “guesses correctly” which other
machine to start — without looking at any input
e Proving ° or * is “harder” — we don’t know when to stop string
from one language and start other!
e Really need nondeterminism!

e (p. 60) Proof that RLs are closed under concatenation
e See Fig. 1.48 on p. 61
e £ edge from each final state of N1 to start state of N2
e N “guesses” when to hop from N1 to N2
e Al accepted by NFA N1, and N1 =(Q1, 5, 61, q1, F1)
e A2 accepted by NFAN2, and N2 =(Q2, 5, 62, g2, F1)
e Construct N=(Q, >, 9, q0, F) to recognize Al > A2
e Q=Q1UQ2
e g0 =ql (from N1)
e F=F2 (from N2)
* 5(q,a) =
=61(g,a) ifqe Ql and q not in F1
=61(g,a)ifqgeFlandaze¢
=61(q,a) U{q2}lifgeFlanda=¢
=62(q,a)ifge Q2 and any a

e (p. 62) Proof that RLs are closed under Kleene star
e See Fig. 1.50 on p. 62
e Add € edge from each final state back to start
e Again guess correctly when to restart N1
e Al accepted by NFA N1, and N1 =(Q1, 5, 61, q1, F1)
e Construct N=(Q, >, 6, q0, F) to recognize A1*
e Q={q0}UuQ1
e g0 = a new state
e F={q0}UF1
e {q0} for empty set when 0 copies
* 5(q,a) =
=61(g,a) ifqe Q1 and q not in F1
=61(g,a)ifqeFlandaz#¢
=61(gq,a) U{ql}ifgeFlanda=¢
={q1}
=¢ifg=Q0andaze

e (p63 — Section 1.3) Regular Expressions
e Example: describing arithmetic expressions:
<opl>->+| -
<op2>->*|/
<factor> -> <number> | (<arith-expr>) | <factor>"<factor>
<term> -> <factor> | <term> <op2> <factor>
< arith-expr > -> <term> | < arith-expr > <op1> <term>

e Notice this defines a precedence for operators:
e Do inside () first
e Do " next
e Do * or / next before + or —

e Do +or-last

e (p. 64) Describing regular expressions R (no precedence)
<regex>->¢ | € | ... any member of } ...
| (<regex > U <regex >)
| (<regex > ° <regex >)
| (<regex>*)

e Note: this demands () all the time
e No assumed precedence
e Normal Precedence rules — drop unnecessary ()
e Do inside () first
e Do *first, then ¢, then U
e Examples p. 65 Example 1.53
e Redo of BNF to “build-in” precedence
<basic-regex>->¢ | € | ... any member of 5 ...
<regex-factor> -> <basic-regex> | (<regex>)
| <regex-factor>*
<regex-term> -> <regex-factor>
| <regex-term> ° < regex-factor >
<regex > -> <regex-term>
| <regex> U <regex>

e Examples p. 65
e (p. 66) Identities: for all R
e RU ¢ =R. Adding empty language to any other does not
change it
e R o e =R. Concatenating the empty string to any string in a
language does not change R
e (p. 66) Non-identities
e R U €& may be different from R.
e E.g. R=0s0L(R)={0}, but L(RU €) ={0, €}
e R° ¢ may be different from R.
e E.g.R=0s0L(R)={0}, butL(R>d)=¢
e There are no strings to concatenate on right
e (p.66) Regex for <number> as defined above
e D={0,1,2,3,4,5,6,7,8, 9}
e (+U-U¢g)(D" U D".D* U D*.D")

e (p. 66) Theorem 1.54: A language is regular iff a regular

expression describes it.

Remember all RLs eqvt to FA

e Lemma 1.55: If L described by a regex R, its regular

e (p. 67) Proof by construction of an NFA: 6 cases

(p. 68, 69) Ex. 1.56, 1.57, 1.58, 1.59

e Lemma 1.60 (p. 69): If Lis regular then it is described by a

regex

e Proof by construction from DFA to GNFA to regex
e Generalized NFAs (GNFA)

NFA where edges may have arbitrary regex on them
e We know that any regex can be converted into an NFA
e Thus could replace each such edge with a small NFA

Start state as transitions to every other state but no
incoming

Only one accept state with transitions incoming from
all others but no outgoing

Start and accept states must be different

Except for start and accept, transition from every
state to every other state, including a self-loop

10

e (p. 73) Formal Definition of GNFA (Q, 5, 8, Ustart, Jaccept)

o &: (Q-{daccept}) X (Q-{astart}) -> R, where R is all regex over 3
e GNFA accepts w if w=w;...w, where each w; string from >*

e and sequence of states q0,...qk such that
® 0 = dstart, 9K = Qfinal
e w; € L(R;) where R; = 6(qi.1, qi) (i.e. the label on the edge)
® (p.71) Any DFA can be converted into GNFA
e Add new start state with € transition to old start
e Add new final state with € from all old final states
e |f edge has multiple labels
e Replace by single edge with label = U of prior labels
e Add edge with ¢ between any states without an edge
e See Fig. 1-61: do conversion on paper to bigger NFA
e (p.69) Lemma 1.60 If Ais regular, then describable by regex
e (p. 73) Proof by converting DFA M for A into GNFA G
e With k = # states in G
e Then modify GNFA as follows
o If k=2 then GNFA must have Qs and Qaccept and edge
between them is desired regex
o If k>2, repeat until k=2: convert G into G’

e Select any start qi, other than Qstarr and Qaccept
e Define G’ be GNFA where Q" = Q — {qp}
e For each Qi in Q - Ostart and g; inQ - {qaccept}

11

e &'(q;,q;) = (R1)(R2)*(R3) U (R4) where
* R1=6(q;,q:p) (label on edge from q; to qyp)
® R2 = 6(0ip,qrip) (label on edge on self loop q;ip)
® R3 =6(qyi,q;) (label on edge from q,;, to q;))
e R4 = 6(q;,q;) (original label on edge from q; to q)
e Eg.p. 75,76

12

