
1

Chap. 1 Regular Languages

 Language = set of strings from some alphabet

 Language L is accepted by FA M if after last symbol both:

 For any string in L, M ends in accept state

 For any string not in L, M does not end in accept state

 Regular Language (RL): any language accepted by a FA

 Also called Regular Expressions (regex)

 Question: Is there a way of describing all, and only,

languages accepted by a FA? I.e. is there a syntax for RLs?

 Can we build “larger” languages from “smaller” ones?

 Answer to all above: YES

 (p.44) Possible set operations on languages A and B:

 Union: A U B = {x | xεA or xεB}

 Intersection: A ∩ A B {x | xεA and xεB}

 Complementation of B wrt A: A/B = {x| xεA and x not in B}

 (p.44) Possible operations on strings in languages

 Concatenation: A ◦ B = {xy |xy a string where xεA and yεB}

 Star: A* = { x|x = ε or x= x1x2 …xk where k≥1 and all xkεA }

 Plus: A+ = { x|x= x1x2 …xk where k≥1 and all xkεA }

 P. 45 Examples of above operations on some simple sets

2

 Fundamental Question: if we apply any of above

operations to known RLs, are we guaranteed to get

another RL?

 Are we guaranteed we can build an FA that accepts result

 Answer: YES if set of RLs is closed under the operation

 Closure: A set is closed under some operation if applying it

to any member(s) of the set returns another member of set

 i.e. can we build a FA (DFA or NFA) that accepts any language

created by applying specified operation

 Typical proof process: by construction

 Assume language A1 accepted by FA M1, A2 by M2:

 Show how to build an M (typically using M1 and M2 as

pieces) that accepts all strings from any combination of

sets A1 and A2 using that operation

 i.e Set of all RLs is closed under these operations

 Assume following in closure proofs

 A1 accepted by DFA M1, and M1 = (Q1, ∑, δ1, q1, F1)

 A2 accepted by DFA M2, and M2 = (Q2, ∑, δ2, q2, F1),

 Q1 ∩ Q2 = ф (i.e. no common states)

 We can always “rename” states to prevent confusion

3

 (p.45,46) Prove closure under U by constructing new DFA M

 Construct M = (Q, ∑, δ, q0, F)

 Q = Q1 x Q2

 i.e. states in M are “named” as tuples (r1, r2)

 r1 in Q1, r2 in Q2

 ∑ same for all 3 machines

 δ((r1,r2), a) = (δ1(r1,a), δ2(r2,a))

 q0 = (q1, q2)

 F = { (r1, r2) | r1εF1 or r2εF2}

 New machine keeps track of states of both machines

 If either ends up in their F, then accept

 If neither accept, then reject

 Do example: A1 = set of even # of a’s, A2 = odd # of b’s

 (p.47) To show we’ve proven closure, must show:

 If w is accepted by either M1 or M2, it is accepted by M

 If w is accepted by M, it is accepted by either M1 or M2

 Both of above are fairly obvious by construction

 Proof of closure under intersection is simple: change F!

4

 Since DFAs=NFAs, L is regular iff accepted by some NFA

 (p. 59-60) Alternative construction proof of U using NFAs

 A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1)

 A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1),

 Construct N = (Q, ∑, δ, q0, F) to recognize A1 U A2

 Q = {q0} U Q1 U Q2

 F = F1 U F2

 δ(q,a) =

 = δ1(q, a) if q ε Q1

 = δ2(q, a) if q ε Q2

 = {q1, q2} if q = q0 and a = ε

 = ф if q = q0 and a ≠ ε

 New starting state q0 “guesses correctly” which other

machine to start – without looking at any input

 Proving ◦ or * is “harder” – we don’t know when to stop string

from one language and start other!

 Really need nondeterminism!

5

 (p. 60) Proof that RLs are closed under concatenation

 See Fig. 1.48 on p. 61

 ε edge from each final state of N1 to start state of N2

 N “guesses” when to hop from N1 to N2

 A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1)

 A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1)

 Construct N = (Q, ∑, δ, q0, F) to recognize A1 ◦ A2

 Q = Q1 U Q2

 q0 = q1 (from N1)

 F = F2 (from N2)

 δ(q,a) =

 = δ1(q, a) if q ε Q1 and q not in F1

 = δ1(q, a) if q ε F1 and a ≠ ε

 = δ1(q, a) U {q2} if q ε F1 and a = ε

 = δ2(q, a) if q ε Q2 and any a

6

 (p. 62) Proof that RLs are closed under Kleene star

 See Fig. 1.50 on p. 62

 Add ε edge from each final state back to start

 Again guess correctly when to restart N1

 A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1)

 Construct N = (Q, ∑, δ, q0, F) to recognize A1*

 Q = {q0} U Q1

 q0 = a new state

 F = {q0} U F1

 {q0} for empty set when 0 copies

 δ(q,a) =

 = δ1(q, a) if q ε Q1 and q not in F1

 = δ1(q, a) if q ε F1 and a ≠ ε

 = δ1(q, a) U {q1} if q ε F1 and a = ε

 = {q1}

 = ф if q = Q0 and a ≠ ε

7

 (p63 – Section 1.3) Regular Expressions

 Example: describing arithmetic expressions:

<op1> -> + | -

<op2> -> * | /

<factor> -> <number> | (<arith-expr>) | <factor>^<factor>

<term> -> <factor> | <term> <op2> <factor>

< arith-expr > -> <term> | < arith-expr > <op1> <term>

 Notice this defines a precedence for operators:

 Do inside () first

 Do ^ next

 Do * or / next before + or –

 Do + or - last

8

 (p. 64) Describing regular expressions R (no precedence)

<regex > -> ɸ | ε | … any member of ∑ …

| (<regex > U <regex >)

| (<regex > ◦ <regex >)

| (<regex>*)

 Note: this demands () all the time

 No assumed precedence

 Normal Precedence rules – drop unnecessary ()

 Do inside () first

 Do * first, then ◦, then U

 Examples p. 65 Example 1.53

 Redo of BNF to “build-in” precedence

<basic-regex> -> ɸ | ε | … any member of ∑ …

<regex-factor> -> <basic-regex> | (<regex>)

| <regex-factor>*

<regex-term> -> <regex-factor>

| <regex-term> ◦ < regex-factor >

<regex > -> <regex-term>

 | <regex> U <regex>

9

 Examples p. 65

 (p. 66) Identities: for all R

 R U ɸ = R. Adding empty language to any other does not

change it

 R ◦ ε = R. Concatenating the empty string to any string in a

language does not change R

 (p. 66) Non-identities

 R U ε may be different from R.

 E.g. R = 0 so L(R) = {0}, but L(R U ε) = {0, ε}

 R ◦ ɸ may be different from R.

 E.g. R = 0 so L(R) = {0}, but L(R ◦ ɸ) = ɸ

 There are no strings to concatenate on right

 (p.66) Regex for <number> as defined above

 D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

 (+ U – U ε) (D+ U D+.D* U D*.D+)

10

 (p. 66) Theorem 1.54: A language is regular iff a regular

expression describes it.

 Remember all RLs eqvt to FA

 Lemma 1.55: If L described by a regex R, its regular

 (p. 67) Proof by construction of an NFA: 6 cases

 (p. 68, 69) Ex. 1.56, 1.57, 1.58, 1.59

 Lemma 1.60 (p. 69): If L is regular then it is described by a

regex

 Proof by construction from DFA to GNFA to regex

 Generalized NFAs (GNFA)

 NFA where edges may have arbitrary regex on them

 We know that any regex can be converted into an NFA

 Thus could replace each such edge with a small NFA

 Start state as transitions to every other state but no

incoming

 Only one accept state with transitions incoming from

all others but no outgoing

 Start and accept states must be different

 Except for start and accept, transition from every

state to every other state, including a self-loop

11

 (p. 73) Formal Definition of GNFA (Q, ∑, δ, qstart, qaccept)

 δ: (Q-{qaccept}) x (Q-{qstart}) -> R, where R is all regex over ∑

 GNFA accepts w if w=w1…wk where each wi string from ∑*

 and sequence of states q0,…qk such that

 q0 = qstart, qk = qfinal

 wi ε L(Ri) where Ri = δ(qi-1, qi) (i.e. the label on the edge)

 (p. 71) Any DFA can be converted into GNFA

 Add new start state with ε transition to old start

 Add new final state with ε from all old final states

 If edge has multiple labels

 Replace by single edge with label = U of prior labels

 Add edge with ɸ between any states without an edge

 See Fig. 1-61: do conversion on paper to bigger NFA

 (p. 69) Lemma 1.60 If A is regular, then describable by regex

 (p. 73) Proof by converting DFA M for A into GNFA G

 With k = # states in G

 Then modify GNFA as follows

 If k=2 then GNFA must have qstart and qaccept and edge

between them is desired regex

 If k>2, repeat until k=2: convert G into G’

 Select any start qrip other than qstart and qaccept

 Define G’ be GNFA where Q’ = Q – {qrip}

 For each qi in Q’ - qstart and qj in Q’ – {qaccept}

12

 δ’(qi,qj) = (R1)(R2)*(R3) U (R4) where

 R1 = δ(qi,qrip) (label on edge from qi to qrip)

 R2 = δ(qrip,qrip) (label on edge on self loop qrip)

 R3 = δ(qrip,qj) (label on edge from qrip to qj))

 R4 = δ(qi,qj) (original label on edge from qi to qj)

 Eg. p. 75,76

