Chap. 1 Regular Languages

- **Language** = set of strings from some alphabet
- Language L is **accepted by** FA M if after last symbol both:
 - For any string in L, M ends in accept state
 - For any string not in L, M does not end in accept state
- **Regular Language (RL)**: any language accepted by a DFA
 - Also called **Regular Expressions (regex)**
- Question: Is there a way of describing all, and only, languages accepted by a FA? I.e. is there a syntax for RLs?
 - Can we build “larger” languages from “smaller” ones?
- Answer to all above: YES
- (p.44) Possible set operations on languages A and B:
 - **Union**: $A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$
 - **Intersection**: $A \cap A B = \{ x \mid x \in A \text{ and } x \in B \}$
 - **Complementation of B wrt A**: $A / B = \{ x \mid x \in A \text{ and } x \not\in B \}$
- (p.44) Possible operations on strings in languages
 - **Concatenation**: $A \circ B = \{ xy \mid xy \text{ a string where } x \in A \text{ and } y \in B \}$
 - **Star**: $A^* = \{ x \mid x = \varepsilon \text{ or } x = x_1 x_2 \ldots x_k \text{ where } k \geq 1 \text{ and all } x_k \in A \}$
 - **Plus**: $A^+ = \{ x \mid x = x_1 x_2 \ldots x_k \text{ where } k \geq 1 \text{ and all } x_k \in A \}$
- P. 45 Examples of above operations on some simple sets
• Fundamental Question: if we apply any of above operations to known RLs, are we guaranteed to get another RL?
 • Are we guaranteed we can build an FA that accepts result
 • Answer: YES if set of RLs is closed under the operation
• **Closure**: A set is closed under some operation if applying it to any member(s) of the set returns another member of set
 • i.e. can we build a FA (DFA or NFA) that accepts any language created by applying specified operation
 • Typical proof process: by construction
 • Assume language A1 accepted by FA M1, A2 by M2:
 • Show how to build an M (typically using M1 and M2 as pieces) that accepts all strings from any combination of sets A1 and A2 using that operation
 • i.e **Set of all RLs is closed under these operations**
 • Assume following in closure proofs
 • A1 accepted by DFA M1, and M1 = (Q1, Σ, δ1, q1, F1)
 • A2 accepted by DFA M2, and M2 = (Q2, Σ, δ2, q2, F1),
 • Q1 ∩ Q2 = φ (i.e. no common states)
 • We can always “rename” states to prevent confusion
(p.45,46) Prove closure under \(U \) by constructing new DFA \(M \)

- Construct \(M = (Q, \Sigma, \delta, q_0, F) \)
 - \(Q = Q_1 \times Q_2 \)
 - i.e. states in \(M \) are “named” as tuples \((r_1, r_2)\)
 - \(r_1 \) in \(Q_1 \), \(r_2 \) in \(Q_2 \)
 - \(\Sigma \) same for all 3 machines
 - \(\delta((r_1,r_2), a) = (\delta_1(r_1,a), \delta_2(r_2,a)) \)
 - \(q_0 = (q_1, q_2) \)
 - \(F = \{ (r_1, r_2) | r_1 \epsilon F_1 \text{ or } r_2 \epsilon F_2 \} \)

- New machine keeps track of states of both machines
 - If either ends up in their \(F \), then accept
 - If neither accept, then reject

- Do example: \(A_1 = \) set of even # of a’s, \(A_2 = \) odd # of b’s

(p.47) To show we’ve proven closure, must show:
 - If \(w \) is accepted by either \(M_1 \) or \(M_2 \), it is accepted by \(M \)
 - If \(w \) is accepted by \(M \), it is accepted by either \(M_1 \) or \(M_2 \)
 - Both of above are fairly obvious by construction

- Proof of closure under intersection is simple: change \(F \)!
• Since DFAs=NFAs, L is regular iff accepted by some NFA
• (p. 59-60) **Alternative construction proof of U** using NFAs
 • A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1)
 • A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1),
 • Construct N = (Q, ∑, δ, q0, F) to recognize A1 U A2
 • Q = {q0} U Q1 U Q2
 • F = F1 U F2
 • δ(q,a) =
 • = δ1(q, a) if q ε Q1
 • = δ2(q, a) if q ε Q2
 • = {q1, q2} if q = q0 and a = ε
 • = Φ if q = q0 and a ≠ ε
 • New starting state q0 “guesses correctly” which other machine to start – without looking at any input
• Proving ◦ or * is “harder” – we don’t know when to stop string from one language and start other!
• Really need nondeterminism!
• (p. 60) Proof that RLs are **closed under concatenation**
 • See Fig. 1.48 on p. 61
 • ε edge from each final state of N1 to start state of N2
 • N “guesses” when to hop from N1 to N2
 • A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1)
 • A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1)
 • Construct N = (Q, ∑, δ, q0, F) to recognize A1 ∘ A2
 • Q = Q1 U Q2
 • q0 = q1 (from N1)
 • F = F2 (from N2)
 • δ(q,a) =
 • = δ1(q, a) if q ∈ Q1 and q not in F1
 • = δ1(q, a) if q ∈ F1 and a ≠ ε
 • = δ1(q, a) U {q2} if q ∈ F1 and a = ε
 • = δ2(q, a) if q ∈ Q2 and any a
• (p. 62) Proof that RLs are **closed under Kleene star**

 • See Fig. 1.50 on p. 62
 • Add ε edge from each final state back to start
 • Again guess correctly when to restart N_1

 • A_1 accepted by NFA N_1, and $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$

 • Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*

 - $Q = \{q_0\} \cup Q_1$
 - q_0 = a new state
 - $F = \{q_0\} \cup F_1$
 - $\{q_0\}$ for empty set when 0 copies
 - $\delta(q,a) =$
 - $= \delta_1(q, a)$ if $q \in Q_1$ and q not in F_1
 - $= \delta_1(q, a)$ if $q \in F_1$ and $a \neq \varepsilon$
 - $= \delta_1(q, a) \cup \{q_1\}$ if $q \in F_1$ and $a = \varepsilon$
 - $= \{q_1\}$
 - $= \emptyset$ if $q = Q_0$ and $a \neq \varepsilon$
• (p63 – Section 1.3) Regular Expressions

• Example: describing arithmetic expressions:

 <op1> -> + | -
 <op2> -> * | /

 <factor> -> <number> | (<arith-expr>) | <factor>^<factor>
 <term> -> <factor> | <term> <op2> <factor>
 < arith-expr > -> <term> | < arith-expr > <op1> <term>

 • Notice this defines a precedence for operators:
 • Do inside () first
 • Do * or / first before + or –
 • Do + or - last

• (p. 64) Describing regular expressions R (no precedence)

 <regex> -> φ | ε | ... any member of Σ ...

 | (<regex> U <regex>)
 | (<regex> ◦ <regex>)
 | (<regex>*)

 • Note: this demands () all the time
 • No assumed precedence
 • Normal Precedence rules – drop unnecessary ()
 • Do inside () first
 • Do * first, then ◦, then U

• Examples p. 65 Example 1.53
• Redo of BNF to “build-in” precedence

\[\langle \text{basic-regex} \rangle \rightarrow \phi \mid \varepsilon \mid \ldots \text{any member of } \Sigma \ldots \]

\[\langle \text{regex-factor} \rangle \rightarrow \langle \text{basic-regex} \rangle \mid (\langle \text{regex} \rangle) \]

\[\mid \langle \text{regex-factor} \rangle^* \]

\[\langle \text{regex-term} \rangle \rightarrow \langle \text{regex-factor} \rangle \]

\[\mid \langle \text{regex-term} \rangle \circ \langle \text{regex-factor} \rangle \]

\[\langle \text{regex} \rangle \rightarrow \langle \text{regex-term} \rangle \]

\[\mid \langle \text{regex} \rangle \cup \langle \text{regex} \rangle \]