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Chap. 1 Regular Languages 

 Language = set of strings from some alphabet 

 Language L is accepted by FA M if after last symbol both: 

 For any string in L, M ends in accept state 

 For any string not in L, M does not end in accept state 

 Regular Language (RL): any language accepted by a FA 

 Also called Regular Expressions (regex) 

 Question: Is there a way of describing all, and only, 

languages accepted by a FA? I.e. is there a syntax for RLs? 

 Can we build “larger” languages from “smaller” ones? 

 Answer to all above: YES 

  (p.44) Possible set operations on languages A and B:  

 Union: A U B = {x | xεA or xεB}  

 Intersection: A ∩ A B {x | xεA and xεB} 

 Complementation of B wrt A: A/B = {x| xεA and x not in B} 

 (p.44) Possible operations on strings in languages 

 Concatenation: A ◦ B = {xy |xy a string where  xεA and  yεB}  

 Star: A* = { x|x = ε or x= x1x2 …xk where k≥1 and all xkεA } 

 Plus: A+ = { x|x= x1x2 …xk where k≥1 and all xkεA } 

 P. 45 Examples of above operations on some simple sets 
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 Fundamental Question: if we apply any of above 

operations to known RLs, are we guaranteed to get 

another RL? 

 Are we guaranteed we can build an FA that accepts result 

 Answer: YES if set of RLs is closed under the operation  

 Closure: A set is closed under some operation if applying it 

to any member(s) of the set returns another member of set 

 i.e. can we build a FA (DFA or NFA) that accepts any language 

created by applying specified operation 

 Typical proof process: by construction 

 Assume language A1 accepted by FA M1, A2 by M2: 

 Show how to build an M (typically using M1 and M2 as 

pieces) that accepts all strings from any combination of 

sets A1 and A2 using that operation  

 i.e Set of all RLs is closed under these operations 

 Assume following in closure proofs 

 A1 accepted by DFA M1, and M1 = (Q1, ∑, δ1, q1, F1) 

 A2 accepted by DFA M2, and M2 = (Q2, ∑, δ2, q2, F1),  

 Q1 ∩ Q2 = ф (i.e. no common states) 

 We can always “rename” states to prevent confusion 
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 (p.45,46) Prove closure under U by constructing new DFA M 

 Construct M = (Q, ∑, δ, q0, F) 

 Q = Q1 x Q2  

 i.e. states in M are “named” as tuples (r1, r2) 

 r1 in Q1, r2 in Q2 

 ∑ same for all 3 machines 

 δ( (r1,r2), a) = ( δ1(r1,a), δ2(r2,a) ) 

 q0 = (q1, q2) 

 F = { (r1, r2) | r1εF1 or r2εF2} 

 New machine keeps track of states of both machines 

 If either ends up in their F, then accept 

 If neither accept, then reject 

 Do example: A1 = set of even # of a’s, A2 = odd # of b’s 

 (p.47) To show we’ve proven closure, must show: 

 If w is accepted by either M1 or M2, it is accepted by M 

 If w is accepted by M, it is accepted by either M1 or M2 

 Both of above are fairly obvious by construction 

 Proof of closure under intersection is simple: change F! 
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 Since DFAs=NFAs, L is regular iff accepted by some NFA 

 (p. 59-60) Alternative construction proof of U using NFAs 

 A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1) 

 A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1),  

 Construct N = (Q, ∑, δ, q0, F) to recognize A1 U A2 

 Q = {q0} U Q1 U Q2 

 F = F1 U F2 

 δ(q,a) =  

 = δ1(q, a) if q ε Q1 

 = δ2(q, a) if q ε Q2 

 = {q1, q2} if q = q0 and a = ε 

 = ф if q = q0 and a ≠ ε 

 New starting state q0 “guesses correctly” which other 

machine to start – without looking at any input 

 Proving ◦ or * is “harder” – we don’t know when to stop string 

from one language and start other! 

 Really need nondeterminism! 
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 (p. 60) Proof that RLs are closed under concatenation  

 See Fig. 1.48 on p. 61 

 ε edge from each final state of N1 to start state of N2 

 N “guesses” when to hop from N1 to N2 

 A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1) 

 A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1) 

 Construct N = (Q, ∑, δ, q0, F) to recognize A1 ◦  A2 

 Q = Q1 U Q2 

 q0 = q1 (from N1) 

 F = F2 (from N2)  

 δ(q,a) =  

 = δ1(q, a) if q ε Q1 and q not in F1 

 = δ1(q, a) if q ε F1 and a ≠ ε 

 = δ1(q, a) U {q2} if q ε F1 and a = ε 

 = δ2(q, a) if q ε Q2 and any a 
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 (p. 62) Proof that RLs are closed under Kleene star  

 See Fig. 1.50 on p. 62 

 Add ε edge from each final state back to start 

 Again guess correctly when to restart N1 

 A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1) 

 Construct N = (Q, ∑, δ, q0, F) to recognize A1* 

 Q = {q0} U Q1 

 q0 = a new state 

 F = {q0} U F1 

 {q0} for empty set when 0 copies  

 δ(q,a) =  

 = δ1(q, a) if q ε Q1 and q not in F1 

 = δ1(q, a) if q ε F1 and a ≠ ε 

 = δ1(q, a) U {q1} if q ε F1 and a = ε 

 = {q1} 

 = ф if q = Q0 and a ≠ ε 
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 (p63 – Section 1.3) Regular Expressions 

 Example: describing arithmetic expressions: 

<op1> -> + | - 

<op2> -> * | / 

<factor> -> <number> | (<arith-expr>) | <factor>^<factor> 

<term> -> <factor> | <term> <op2> <factor> 

< arith-expr > -> <term> | < arith-expr > <op1> <term> 

 Notice this defines a precedence for operators: 

 Do inside () first 

 Do ^ next 

 Do * or / next before + or – 

 Do + or - last 
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 (p. 64) Describing regular expressions R (no precedence) 

<regex > -> ɸ | ε | … any member of ∑ … 

| ( <regex > U <regex > ) 

| (<regex > ◦ <regex > ) 

| (<regex>*) 

 Note: this demands () all the time 

 No assumed precedence 

 Normal Precedence rules – drop unnecessary () 

 Do inside () first 

 Do * first, then ◦, then U 

 Examples p. 65 Example 1.53 

 Redo of BNF to “build-in” precedence 

<basic-regex> -> ɸ | ε | … any member of ∑ … 

<regex-factor> -> <basic-regex> | ( <regex> )  

| <regex-factor>* 

<regex-term> -> <regex-factor>  

| <regex-term> ◦ < regex-factor >  

<regex > -> <regex-term>  

     | <regex> U <regex>  
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 Examples p. 65 

 (p. 66) Identities: for all R 

 R U ɸ = R. Adding empty language to any other does not 

change it 

 R ◦ ε = R. Concatenating the empty string to any string in a 

language does not change R 

 (p. 66) Non-identities 

 R U ε  may be different from R. 

 E.g. R = 0 so L(R) = {0}, but L(R U ε) = {0, ε} 

 R ◦ ɸ  may be different from R. 

 E.g. R = 0 so L(R) = {0}, but L(R ◦ ɸ) = ɸ 

 There are no strings to concatenate on right 

 (p.66) Regex for <number> as defined above 

 D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

 (+ U – U ε) (D+  U  D+.D*  U  D*.D+ ) 
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 (p. 66) Theorem 1.54: A language is regular iff a regular 

expression describes it. 

 Remember all RLs eqvt to FA 

 Lemma 1.55: If L described by a regex R, its regular 

 (p. 67) Proof by construction of an NFA: 6 cases 

 (p. 68, 69) Ex. 1.56, 1.57, 1.58, 1.59 

 Lemma 1.60 (p. 69): If L is regular then it is described by a 

regex 

 Proof by construction from DFA to GNFA to regex 

 Generalized NFAs (GNFA) 

 NFA where edges may have arbitrary regex on them 

 We know that any regex can be converted into an NFA 

 Thus could replace each such edge with a small NFA 

 Start state as transitions to every other state but no 

incoming 

 Only one accept state with transitions incoming from 

all others but no outgoing 

 Start and accept states must be different 

 Except for start and accept, transition from every 

state to every other state, including a self-loop 
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 (p. 73) Formal Definition of GNFA (Q, ∑, δ, qstart, qaccept) 

 δ: (Q-{qaccept}) x (Q-{qstart}) -> R, where R is all regex over ∑ 

 GNFA accepts w if w=w1…wk where each wi string from ∑* 

 and sequence of states q0,…qk such that 

 q0 = qstart, qk = qfinal 

 wi ε L(Ri) where Ri = δ(qi-1, qi) (i.e. the label on the edge) 

 (p. 71) Any DFA can be converted into GNFA 

 Add new start state with ε transition to old start 

 Add new final state with ε from all old final states 

 If edge has multiple labels 

 Replace by single edge with label = U of prior labels 

 Add edge with ɸ between any states without an edge 

 See Fig. 1-61: do conversion on paper to bigger NFA 

 (p. 69) Lemma 1.60  If A is regular, then describable by regex 

 (p. 73) Proof by converting DFA M for A into GNFA G 

 With k = # states in G 

 Then modify GNFA as follows 

 If k=2 then GNFA must have qstart and qaccept and edge 

between them is desired regex 

 If k>2, repeat until k=2: convert G into G’  

 Select any start qrip other than qstart and qaccept 

 Define G’ be GNFA where Q’ = Q – {qrip} 

 For each qi in Q’ - qstart and qj in Q’ – {qaccept} 
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 δ’(qi,qj) = (R1)(R2)*(R3) U (R4) where 

 R1 = δ(qi,qrip) (label on edge from qi to qrip ) 

 R2 = δ(qrip,qrip) (label on edge on self loop qrip)  

 R3 = δ(qrip,qj) (label on edge from qrip to qj) )  

 R4 = δ(qi,qj) (original label on edge from qi to qj) 

 Eg. p. 75,76 

 


