
1

Chap. 4,5 Review

 Algorithms created in proofs from prior chapters

 (p. 55) Theorem 1.39: NFA to DFA

 (p. 67) Lemma 1.55: Regex to NFA

 (p. 69) Lemma 1.60: DFA to regex (through GNFA)

 (p. 112) Lemma 2.21: CFG to PDA

 (p. 121) Lemma 2.27: PDA to CFG

 (p. 177) Theorem 3.13: Multi-tape TM to single tape

 (p. 178) Theorem 3.16: NTM to TM

 Each of the proofs of decidable languages in Chap. 4 has

an algorithm from the associated TM decider

 L is Turing-recognizable if some TM accepts any

member, and never accepts a non-member

 Halts on any member, but may not halt on non-members

 L is Turing-decidable if some TM accepts any member,

and rejects all non-members

 Halts for all inputs

 L is co-Turing-recognizable if some TM accepts any

non-member, and never accepts any member

 Halts on non-members, but may not halt on member

 L is undecidable if no TM decider exists

2

 (p. 209) L is decidable iff both Turing-recognizable and

co-Turing-recognizable

 Interesting languages: languages whose members

include descriptions (encodings) of machines

 <M> = “Encoding” of machine M as a string

 <M,w> = “Encoding” of M and string w as a string

 (p. 202) Diagonalization Method:

 Compare 2 sets of possibly infinite size

 If you can create table of 2 languages & can “correspond” every

element of 1 set with element of other, then same size

 Decidable Regular Languages

 (p. 194) ADFA = {<B,w>| B is a DFA that accepts w}

 (p. 195) ANFA = {<B,w>| B is an NFA that accepts w}

 (p. 196) AREX = {<R,w>| R is a regex that generates w}

 (p. 196) EDFA = {<A>| A is a DFA where L(A) = Φ}

 (p. 197) EQDFA = {<A,B>| A,B both DFAs & L(A) = L(B)}

 (Prob. 4.3) ALLDFA = {<A>| A a DFA and L(A)=Σ*}

 (Prob. 4.10) INFINITEDFA = {<A>| A a DFA, L(A) is infinite}

 (Prob. 4.11) INFINITEPDA = {<A>| A a PDA, L(A) is infinite}

 Decidable Problems re CFLs

 (p. 198) ACFG = {<G,w>|G is a CFG that generates w}

 (p. 199) ECFG = {<G>|G is a CFG & L(G) = Φ}

3

 (p. 200) EQCFG = {<G,H>|G & H are CFGs, & L(G)=L(H)}

 (p. 200) Theorem 4.9 Every CFL is decidable

 Pr. 4.4 AεCFG = {<G>|G is a CFG that generates ε}

 Other Decidable problems

 Pr. 4.5 ETM = {<M>|M a TM and L(M)=Ф}

 Pr. 4.11: INFINITEPDA = {<M>| M a PDA and L(M) is ∞}

 (p. 222,223) ALBA = {<M,w>|M is LBA that accepts w}

 LBA is a TM that cannot move beyond initial input

 Proof by showing # of configuration histories is finite

 Undecidable Languages: A decider does not exist.

 (p. 202) HALTTM = {<M,w>| M is a TM that halts on w}

 (p. 207) ATM = {<M,w>| M accepts w}

 (p. 217) ETM = {<M>| M is a TM and L(M)=Φ}

 (p. 218) REGULARTM={<M>|M a TM & L(M) is regular}

 (p. 219) LP = {<M>| M a TM such that L(M) has property P}

 (p. 220) EQTM = {<M1,M2>|M1, M2 TMs, L(M1)=L(M2)}

 (p. 222) ALBA = {<M,w>| M an LBA that accepts w}

 (p. 223) ELBA = {<M>| M an LBA where L(M) is empty}

 (p. 225) ALLCFG = {<G>| G is CFG where L(G)=Σ*}

 (p. 228) PCP = {<P> | P instance of Post Correspondence Problem)

4

 Result: p.201 Fig. 4.10. Following are proper subsets

 RL subset of CFL subset of Decidable Languages subset of

Turing-recognizable languages

 Undecidable Languages: No deciders exist

 (p. 202) ATM = {<M,w>| M is a TM and M accepts w}

 Notional Proof:

 Assume H a decider for ATM

 Accept if M accepts w

 Reject if M does not accept w

 Define D as machine with inputs <M>

 Run H on <M,<M>>

 Accept if H rejects <M>, reject if H accepts <M>

 Consider D(<D>)

 Accepts if H rejects <D,<D>>, i.e. D rejects <D>

 Reject if H accepts <D,<D>>, i.e. D accepts <D>

 Tabular form of proof (p. 208)

 Table rows = machines

 Table columns = encodings of machines

 One of the rows (and columns) is for D

 Fig. 4.19: cell[i,j] = running machine i on string j

 Fig. 4.20: cell[i,j] = running H on <<i>,j>

 Fig. 4.21: look at row for D when it processes <D>

5

Map instance
of A into

instance of B

Decider
R for

Language B

Map results
from B

back into
results for A

Decider S for Language A
Using assumed decider for Language B

Any Instance

of Language A

Results for

A instance

If we chose A as a known undecidable language,
then if R exists as decider for B, then we have built a decider for A

- which we know is impossible

 (Chap. 5) Reduction: convert problem A into another

problem B, where algorithm for B can solve A

 Typical Undecidability Proof for Language B:

 Assume Decider for B exists, and call it R

 Choose some known undecidable language A

 Design a reduction from any string wA from A into a string

wB for B whereby the answer from R for wB tells us the

answer for wA

 Thus if decider R exists, so does one for Language A

6

 Undecidable Problems about Turing Machines M

 (p. 216) HALTTM = {<M,w>|M halts on w}

 Use ATM for problem A

 (p. 217) ETM = {<M>|L(M) is empty}

 Use ATM for problem A

 (p. 219) REGULARTM = {<M>|L(M) is regular}

 Use ATM for problem A

 (p. 220) EQTM = {<M1,M2>|L(M1) = L(M2)}

 Use ETM for problem A

 (p. 220) ELBA = {<M,w>|M is a LBA that accepts w}

 Use ATM for problem A

 (p. 225) ALLCFG = {<G>|G a CFG and L(G)=∑*}

 Use ATM for problem A

 (p. 227) Post Correspondence Problem

 Pr. 5.1: EQCFG = {<G1,G2>|L(G1) = L(G2)}

 Pr. 5.9: T= {<M>|M accepts w whenever it accepts wR}

7

Problem Solving Steps:

 Define the language precisely.

 Know what an element of the language is (as a string)

 What properties does the string have to have

 For decision problems: know what is to be decided

 You are looking for an algorithm/TM that accepts a string

that is in the language, and rejects otherwise

 You want to “write a program that always halts”

 Typically, show how to

 “Reduce” any string from language into a string for a

language you know is decidable

 Convert the answer from the known decider into an

answer for the desired decider

 For undecidability problems, form a contradiction

 Make sure you know what the language is (call it B

 Be explicit about what decider, if it exists, has to answer

 Assume the decider exists (call it R)

 Choose a undecidable language A , call “decider” for it as

S, & build a reducer as above from any string in A to B

 Show how answers from R then can answer S

 Hint: sometimes reducer converts an input

machine/grammar to a different machine/grammar

