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Chap. 4,5 Review 

 Algorithms created in proofs from prior chapters 

 (p. 55) Theorem 1.39: NFA to DFA 

 (p. 67) Lemma 1.55: Regex to NFA 

 (p. 69) Lemma 1.60: DFA to regex (through GNFA) 

 (p. 112) Lemma 2.21: CFG to PDA 

 (p. 121) Lemma 2.27: PDA to CFG 

 (p. 177) Theorem 3.13: Multi-tape TM to single tape 

 (p. 178) Theorem 3.16: NTM to TM 

 Each of the proofs of decidable languages in Chap. 4 has 

an algorithm from the associated TM decider 

 L is Turing-recognizable if some TM accepts any 

member, and never accepts a non-member 

 Halts on any member, but may not halt on non-members 

 L is Turing-decidable if some TM accepts any member, 

and rejects all non-members 

 Halts for all inputs 

 L is co-Turing-recognizable if some TM accepts any 

non-member, and never accepts any member  

 Halts on non-members, but may not halt on member  

 L is undecidable if no TM decider exists 
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 (p. 209) L is decidable iff both Turing-recognizable and 

co-Turing-recognizable 

 Interesting languages: languages whose members 

include descriptions (encodings) of machines 

 <M> = “Encoding” of machine M as a string 

 <M,w> = “Encoding” of M and string w as a string 

 (p. 202) Diagonalization Method: 

 Compare 2 sets of possibly infinite size 

 If you can create table of 2 languages & can “correspond” every 

element of 1 set with element of other, then same size 

 Decidable Regular Languages 

 (p. 194) ADFA = {<B,w>| B is a DFA that accepts w} 

 (p. 195) ANFA = {<B,w>| B is an NFA that accepts w} 

 (p. 196) AREX = {<R,w>| R is a regex that generates w} 

 (p. 196) EDFA = {<A>| A is a DFA where L(A) = Φ} 

 (p. 197) EQDFA = {<A,B>| A,B both DFAs & L(A) = L(B)} 

 (Prob. 4.3) ALLDFA = {<A>| A a DFA and L(A)=Σ*} 

  (Prob. 4.10) INFINITEDFA = {<A>| A a DFA, L(A) is infinite} 

 (Prob. 4.11) INFINITEPDA = {<A>| A a PDA, L(A) is infinite} 

 Decidable Problems re CFLs 

 (p. 198) ACFG = {<G,w>|G is a CFG that generates w} 

 (p. 199) ECFG = {<G>|G is a CFG & L(G) = Φ}  
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 (p. 200) EQCFG = {<G,H>|G & H are CFGs, & L(G)=L(H)}  

 (p. 200) Theorem 4.9 Every CFL is decidable  

 Pr. 4.4 AεCFG = {<G>|G is a CFG that generates ε} 

 Other Decidable problems 

 Pr. 4.5 ETM = {<M>|M a TM and L(M)=Ф} 

 Pr. 4.11: INFINITEPDA = {<M>| M a PDA and L(M) is ∞}  

 (p. 222,223) ALBA = {<M,w>|M is LBA that accepts w} 

 LBA is a TM that cannot move beyond initial input 

 Proof by showing # of configuration histories is finite 

 Undecidable Languages: A decider does not exist.  

 (p. 202) HALTTM =  {<M,w>| M is a TM that halts on w} 

 (p. 207) ATM = {<M,w>| M accepts w} 

 (p. 217) ETM =  {<M>| M is a TM and L(M)=Φ} 

 (p. 218) REGULARTM={<M>|M a TM & L(M) is regular} 

 (p. 219) LP = {<M>| M a TM such that L(M) has property P} 

 (p. 220) EQTM = {<M1,M2>|M1, M2 TMs, L(M1)=L(M2)} 

 (p. 222) ALBA = {<M,w>| M an LBA that accepts w} 

 (p. 223) ELBA = {<M>| M an LBA where L(M) is empty} 

 (p. 225) ALLCFG = {<G>| G is CFG where L(G)=Σ*} 

 (p. 228) PCP = {<P> | P instance of Post Correspondence Problem) 
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 Result: p.201 Fig. 4.10. Following are proper subsets 

 RL subset of CFL subset of Decidable Languages subset of 

Turing-recognizable languages 

 Undecidable Languages: No deciders exist 

 (p. 202)  ATM = {<M,w>| M is a TM and M accepts w} 

 Notional Proof: 

 Assume H a decider for ATM  

 Accept if M accepts w 

 Reject if M does not accept w 

 Define D as machine with inputs <M> 

 Run H on <M,<M>> 

 Accept if H rejects <M>, reject if H accepts <M> 

 Consider D(<D>) 

 Accepts if H rejects <D,<D>>, i.e. D rejects <D> 

 Reject if H accepts <D,<D>>, i.e. D accepts <D> 

 Tabular form of proof (p. 208)  

 Table rows = machines 

 Table columns = encodings of machines 

 One of the rows (and columns) is for D 

 Fig. 4.19: cell[i,j] = running machine i on string j 

 Fig. 4.20: cell[i,j] = running H on <<i>,j> 

 Fig. 4.21: look at row for D when it processes <D> 
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Any Instance

of Language A

Results for

A instance

If we chose A as a known undecidable language, 
then if R exists as decider for B, then we have built a decider for A

- which we know is impossible

 (Chap. 5) Reduction: convert problem A into another 

problem B, where algorithm for B can solve A 

 

 

 

 

 

 

 Typical Undecidability Proof for Language B: 

 Assume Decider for B exists, and call it R 

 Choose some known undecidable language A 

 Design a reduction from any string wA from A into a string 

wB for B whereby the answer from R for wB tells us the 

answer for wA 

 Thus if decider R exists, so does one for Language A 
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 Undecidable Problems about Turing Machines M 

 (p. 216) HALTTM = {<M,w>|M halts on w} 

 Use ATM for problem A 

 (p. 217) ETM = {<M>|L(M) is empty}  

 Use ATM for problem A 

 (p. 219) REGULARTM = {<M>|L(M) is regular}  

 Use ATM for problem A 

 (p. 220) EQTM = {<M1,M2>|L(M1) = L(M2)}  

 Use ETM for problem A 

 (p. 220) ELBA = {<M,w>|M is a LBA that accepts w}  

 Use ATM for problem A 

 (p. 225) ALLCFG = {<G>|G a CFG  and L(G)=∑*}  

 Use ATM for problem A 

 (p. 227) Post Correspondence Problem 

 Pr. 5.1: EQCFG = {<G1,G2>|L(G1) = L(G2)}  

 Pr. 5.9: T= {<M>|M accepts w whenever it accepts wR} 
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Problem Solving Steps: 

 Define the language precisely.  

 Know what an element of the language is (as a string) 

 What properties does the string have to have 

 For decision problems: know what is to be decided 

 You are looking for an algorithm/TM that accepts a string 

that is in the language, and rejects otherwise 

 You want to “write a program that always halts” 

 Typically, show how to 

 “Reduce” any string from language into a string for a 

language you know is decidable 

 Convert the answer from the known decider into an 

answer for the desired decider 

 For undecidability problems, form a contradiction 

 Make sure you know what the language is (call it B 

 Be explicit about what decider, if it exists, has to answer 

 Assume the decider exists (call it R) 

 Choose a undecidable language A , call “decider” for it as 

S, & build a reducer as above from any string in A to B 

 Show how answers from R then can answer S 

 Hint: sometimes reducer converts an input 

machine/grammar to a different machine/grammar 


