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pp. 193-201. TM-Decidable Languages (Sec. 4.1) 

 L is TM-decidable if some TM decides it (& always 

halts) 

 (p. 194) Acceptance problem: does some FA accept a 

string? 

 Can we build a TM that: 

 given a representation for some FA and some string, 

 tell us if that FA accepts the string, or not 

 and do so in finite time 

 and never loop 

 

 NOTE: after this section is done, I 

STRONGLY SUGGEST making your own 

table of those languages which are 

decidable. 
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 Define ADFA = {<B,w>| B is a DFA that accepts w} 

 <B,w> is “encoding” of DFA B and string w in a way that a 

TM can “interpret” B’s processing of w 

 E.g. <B> is a list of B’s 5 components  

 ADFA is set of all encoded DFAs & the strings they accept 

 Is ADFA decidable? 

 Does there exist a TM that accepts all members of ADFA 

and rejects all other inputs? 

 I.e. does it always halt 

 (p. 194) Theorem 4.1: ADFA is decidable 

 Proof: M = “On input <B,w> where B is a DFA & w a string” 

 M receives a tape with <B,w> on it 

 Determine if representation of <B> is formatted ok 

 Simulate DFA B on string w 

 Keep track of B’s current state and position into its 

input w on M’s tape 

 Search for correct transition 

 Update state and index 

 If simulated B ends in accept, accept. If it ends in 

nonaccept, reject. 

 Note: formatted B always stops after finite # of steps 

 Thus so will TM 
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 Define ANFA = {<B,w>| B is an NFA that accepts w} 

 (p. 195) Theorem 4.2: ANFA is decidable  

 Proof: N = “On input <B,w> where B is  NFA & w a string” 

 Convert NFA B into equivalent DFA C 

 Encode C and w on tape as <C,w> 

 Having a multi-tape TM may be useful 

 Run machine M from Theorem 4.1 on <C,w> 

 If M accepts, N accepts, else N rejects 

 Note use of a “subroutine” M 

 

 Define AREX = {<R,w>| R is a regex that generates w} 

 (p. 196) Theorem 4.3 AREX is decidable   

 Proof: Convert R into an NFA 

 Then run TM N 

 If N accepts, then accept, else reject  
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 Define EDFA = {<A>| A is a DFA where L(A) = Φ} 

 “E” for “empty” 

 I.e. the set of all DFAs that accept no strings 

 (p. 196) Theorem 4.4 EDFA is decidable   

 Proof: Use the BFS algorithm starting on start state of A 

 Mark states that are reachable from start state 

 If any Final State is marked, reject 

 If not, accept 

 Again will halt since only finite # of states in any DFA 

 

 Define EQDFA = {<A,B>| A,B both DFAs & L(A) = L(B)} 

 “EQ” stands for Equivalent 

 I.e. the set of all pairs of DFAs that are equivalent 

 (p. 196) Theorem 4.5 EQDFA is decidable   

 Proof:  

 Construct a new DFA C from A and B that 

 Accepts only those strings that are accepted by either 

A or B, but not both  

 i.e. L(C) = (L(A) ∩ not(L(B))) U (not(L(A)) ∩ L(B)) 

 Called Symmetric Difference 

 If L(C) is empty then A & B gen same language 

 Then use machine from Theorem 4.4 
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 (p. 198) Decidable Problems re CFLs 

 

 Define ACFG = {<G,w>|G is a CFG that generates w} 

 (p. 198) Theorem 4.7 ACFG is a decidable language 

 If G is in Chomsky Normal Form, any derivation of w has 

2n-1 steps, where |w|=n 

 TM S 

 Convert G to Chomsky 

 List all derivations with 2n-1 steps 

 If any generate w, accept, else reject 

 

 Define ECFG = {<G>|G is a CFG & L(G) = Φ}  

 (p. 199) Theorem 4.8 ECFG is a decidable language 

 TM R 

 Mark all terminal symbols in G 

 Repeat until no new variables get marked 

 Mark any variable A where G has a rule A->U1U2…Uk  

and each symbol Ui has already been marked 

 If start variable not marked, accept, else reject 
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 Define EQCFG = {<G,H>|G & H are CFGs, & L(G)=L(H)}  

 Cannot use DFA approach because CFLs not closed under 

complement or intersection &  this is NOT decidable 

 (p. 200) Theorem 4.9 Every CFL is decidable  

 Don’t want to try converting a PDA into an TM 

 Some branches of PDAs computation may go on 

forever, so TM can’t be a decider 

 Proof: Let G be a CFG for A; TM MG is to decide A 

 Run TM S on <G,w> 

 If it accepts, then accept, else reject 

 

 Result: p.201 Fig. 4.10. Following are proper subsets of 

the next one 

 Regular languages 

 Context-Free languages 

 Decidable Languages 

 Turing-recognizable languages 


