
1

pp. 193-201. TM-Decidable Languages (Sec. 4.1)

 L is TM-decidable if some TM decides it (& always

halts)

 (p. 194) Acceptance problem: does some FA accept a

string?

 Can we build a TM that:

 given a representation for some FA and some string,

 tell us if that FA accepts the string, or not

 and do so in finite time

 and never loop

 NOTE: after this section is done, I

STRONGLY SUGGEST making your own

table of those languages which are

decidable.

2

 Define ADFA = {<B,w>| B is a DFA that accepts w}

 <B,w> is “encoding” of DFA B and string w in a way that a

TM can “interpret” B’s processing of w

 E.g. is a list of B’s 5 components

 ADFA is set of all encoded DFAs & the strings they accept

 Is ADFA decidable?

 Does there exist a TM that accepts all members of ADFA

and rejects all other inputs?

 I.e. does it always halt

 (p. 194) Theorem 4.1: ADFA is decidable

 Proof: M = “On input <B,w> where B is a DFA & w a string”

 M receives a tape with <B,w> on it

 Determine if representation of is formatted ok

 Simulate DFA B on string w

 Keep track of B’s current state and position into its

input w on M’s tape

 Search for correct transition

 Update state and index

 If simulated B ends in accept, accept. If it ends in

nonaccept, reject.

 Note: formatted B always stops after finite # of steps

 Thus so will TM

3

 Define ANFA = {<B,w>| B is an NFA that accepts w}

 (p. 195) Theorem 4.2: ANFA is decidable

 Proof: N = “On input <B,w> where B is NFA & w a string”

 Convert NFA B into equivalent DFA C

 Encode C and w on tape as <C,w>

 Having a multi-tape TM may be useful

 Run machine M from Theorem 4.1 on <C,w>

 If M accepts, N accepts, else N rejects

 Note use of a “subroutine” M

 Define AREX = {<R,w>| R is a regex that generates w}

 (p. 196) Theorem 4.3 AREX is decidable

 Proof: Convert R into an NFA

 Then run TM N

 If N accepts, then accept, else reject

4

 Define EDFA = {<A>| A is a DFA where L(A) = Φ}

 “E” for “empty”

 I.e. the set of all DFAs that accept no strings

 (p. 196) Theorem 4.4 EDFA is decidable

 Proof: Use the BFS algorithm starting on start state of A

 Mark states that are reachable from start state

 If any Final State is marked, reject

 If not, accept

 Again will halt since only finite # of states in any DFA

 Define EQDFA = {<A,B>| A,B both DFAs & L(A) = L(B)}

 “EQ” stands for Equivalent

 I.e. the set of all pairs of DFAs that are equivalent

 (p. 196) Theorem 4.5 EQDFA is decidable

 Proof:

 Construct a new DFA C from A and B that

 Accepts only those strings that are accepted by either

A or B, but not both

 i.e. L(C) = (L(A) ∩ not(L(B))) U (not(L(A)) ∩ L(B))

 Called Symmetric Difference

 If L(C) is empty then A & B gen same language

 Then use machine from Theorem 4.4

5

 (p. 198) Decidable Problems re CFLs

 Define ACFG = {<G,w>|G is a CFG that generates w}

 (p. 198) Theorem 4.7 ACFG is a decidable language

 If G is in Chomsky Normal Form, any derivation of w has

2n-1 steps, where |w|=n

 TM S

 Convert G to Chomsky

 List all derivations with 2n-1 steps

 If any generate w, accept, else reject

 Define ECFG = {<G>|G is a CFG & L(G) = Φ}

 (p. 199) Theorem 4.8 ECFG is a decidable language

 TM R

 Mark all terminal symbols in G

 Repeat until no new variables get marked

 Mark any variable A where G has a rule A->U1U2…Uk

and each symbol Ui has already been marked

 If start variable not marked, accept, else reject

6

 Define EQCFG = {<G,H>|G & H are CFGs, & L(G)=L(H)}

 Cannot use DFA approach because CFLs not closed under

complement or intersection & this is NOT decidable

 (p. 200) Theorem 4.9 Every CFL is decidable

 Don’t want to try converting a PDA into an TM

 Some branches of PDAs computation may go on

forever, so TM can’t be a decider

 Proof: Let G be a CFG for A; TM MG is to decide A

 Run TM S on <G,w>

 If it accepts, then accept, else reject

 Result: p.201 Fig. 4.10. Following are proper subsets of

the next one

 Regular languages

 Context-Free languages

 Decidable Languages

 Turing-recognizable languages

