A Quick Introduction to the
Micron Automata Chip

Peter M. Kogge
Univ. of Notre Dame

See also:
e Dlugosch, et al. “An Efficient and Scalable Semiconductor Architecture for

Parallel Automata Processing,” IEEE Trans. PDS, Dec. 2014
» Center for Automata Processors, UVA, http://cap.virginia.edu/

Several slides copied from K. Skadron, M. Stan. “Automata Processing: Massively-Parallel
Acceleration for Approximate Pattern Matching and String Processing”
http://www.clsac.org/uploads/5/0/6/3/50633811/skadron-clsac-2016.pdf

* 1 UNIVERSITY OF

5) NOTRE DAME Automata C

EE fili UNIVERSITY/ VIRGINIA
The Automata Processor

« Hardware accelerator specifically for symbolic pattern matching
« Hardware implementation of non-deterministic finite automata (NFA)

» A highly parallel, reconfigurable fabric comprised of ~50,000 pattern- :
matching elements per chip. First-generation boards have 32 chips, :
giving ~1.5M processin]; elements '

 Exploits the very high and natural level of parallelism found
in memory arrays

 On-board FPGA will allgw sophisticated processing pipelines

SR AUTeMATA
PROCESSING

The Automata Chip

e Massively parallel set of NFAs on a chip

e Designed for complex regular expressions
e Can be expanded to multi-chip systems

e Includes a programming language ANML

E : | e
https://si.wsj.net/public/resources/images/BA-BJ332A_Tech__NS_20151030225643.jpg) A T; ﬁ

=] TR Automata Overview N / F': had
NOTRE DAME -@%ﬁ@/\\/

B A UNIVERSITY,/ VIRGINIA
Problems Aligned with the Automata Processor

Applications requiring deep analysis of data streams containing spatial and
temporal information are often impacted by the memory wall and will
benefit from the processing efficiency and parallelism
of the Automata Processor

m Bioinformatics:
. -,

Network Security:
* Millions of patterns

» Real-time results
 Unstructured data

= ° Large operands

» Complex patterns

= Many combinatorial problems
« Unstructured data

Video Analytics: 3% Data Analytics:
» Highly parallel operation > . 54 = Highly parallel operation
* Real-time operation k = %0 [Real-time operation

. <5 * Complex patterns
» Many combinatorial problems
* Unstructured data

» Unstructured data

So far: 10-100sX speedups possible! 29

NFAs and Automata

e Normal definition 5-tuple (Q, 2, 0, q,, F)
— Q = set of states
— 2: alphabet of input symbols
- 0: Qx2 -> P(Q) (set of all subsets of Q)
- (,: start state
— F: set of final accepting states

e Extension to 0: o(C,a) = Union of d(qg,a)

— where C = set of states, gisin C

e Also 0: o(C) = follow(C) = Union of o(C,a)
— Set of all states that you can get to from any state in C
- Where aisin 2

UNIV.ERSILIESEEE

-5) NOTRE DAME 3 u //\W@% yy@/\y

Homogeneous Automaton

e All transitions entering a state must occur on

same input symbol(s), i.e.

- Ifa&barein 2,andp &qgareinQ
— Then o(p,a) N 0(q,b) = 0(q,a) N d(p,b)

e State g accepts a if
— a is on some incoming transition to g

e symbols(a) = set of all states that accept a
— symbols(a) = U, o0(q,a)
— g accepts a iff g in symbols(a)

e Thus 0(C,a) = follow(C) N symbols(a)

— Remember C 1s some subset of states

L UNIV.ERSILIESEEE

5) NOTRE DAME Automate

S
-

Execution: Input string Is S

1: C = é(qy) C is all possible next states
2:1f g € F then
3: match the empty string

4: end if

5: for each mput character o in 5 do T s set of states that accept

6: T =Cnnsymbols(a) next input, given we could be in
7: if TN F # () then any of set of states C

8: we have a match Test to see if in accepting state

9: end if

10: 1f T is empty then

. _ Test to see if we reject
11: stop processing S5

12: Em‘l if
13: = §(T") Update C for next symbol from input
14: Em‘l for

&g{ﬁisﬁfﬁ\fﬁ Automata Over\i I/\W@

State Sets as Bit Vectors

e Assume |Q| = m (i.e. m states)

e Represent state sets as m-bit bit vectors
— bit j=1 implies state j is in current set
— 29: m bit vector where position corresponding to g is 1
— 2C: OR of all 29 where g isin C

¢ A:20x ¥ ->2Q i3 bit vector equivalent of o
e Set intersection is now a bit-wise AND

* 1 UNIV.ERSILIESEEE

NOTRE DAME Autonisy b | /MN@%FK@N

Bit Vector Execution

1: 2¢ =21
2:if 28 & 0 %1 #0 then
3: match the empty string
4: end 1f
5: for each input character o in S do
27 = 2% & symbols|a]
if 27&2% = () then
we have a match
end if
10: Set 2 =0, ¥, € T, 2 = 2%|follow[q]
11: if 2° = 0 then
12: stop processing S
13: end if
14: end for

i = /T;F?i
UNIVERSITY OF - i
w Automata Overvie

NOTRE DAME : /\W@%ZTH@N

& = bit vector AND
| = bit vector OR

f:
7
8:
9:

Bit Vector Example

e Consider the NFA N4 Fig. 1. 36 on p. 53
- 5(1,b)={2} 7\
- 5(1,6)={3}
- 5(2,a)={2,3}
- 5(2,b)={3}
- 5(3,a)={1}

e m=3 (3 states) so bit vector is 3 bits long
- If Cis 011 (either in state 2 or 3)
— And next input is “a”

— Then next state is 111: the OR of
e 100 (from d(3,a)={1})
e 011 (from d(2,a)={2,3})

* 1 UNIVERSITY OF

NOTRE DAME Automata C

Conventional Memory Block

Ay
r—# | Row degoder Y
ktl
Row deooder
n-k

A
—L Column degoder “Column mux”

Ay,
n-:i:: address: selects 1 out of
: h 2K bit
[Ag.1-Arl[Ak-Ap] < o1t bt eac its

For example: Lat N = 1,048,576 snd M = 8 bits for a 1 million byte memory.
- -zﬂ.k-ﬂmd -IUHH-S. -

250 oolumna/2? bits per word = 2% = 256 words.

http://ece-research.unm.edu/jimp/vlsi/slides/chap8_2-1.gif > = i
T JUNIVERSITY OF : 7 rr oad
— — NNV AN

A 2Gb DRAM Chip

Hundreds of prior blocks

http://2.bp.blogspot.com/__ZSc4tYyVNI/TUbE3RjzDf/AAAAAAAAAFo/oP7UqXefwtU/s320/K4B2G0846B-HCHI_K4B2G0846D-s-r_branded.jpg

UNIVERSITY OF Aut ta O .
NOTRE DAME utomata VerVIEW’ N@%ﬁi@ﬁ

Automata Chip

i, || i, || i, | i,

STE = State Transition Element S{EF gz I E‘
2 =
One row for each o e (&%) —> =
possible symbol P nt]z“-zl o B > 8
(256 of them) B) N
E"g “ieomen ¥ row fora=symbols(s) | <
o B0 | o Bl ., EREEE| 59
Symbol* |5 2 , o |EISM5 SI5|5[(515] E =
30 gla|e S EE T
Logic contains 51; RowEnate @) [qHH __JElElENELE] = ‘g
C,T ... and performs =5_ H:Z:;:: - 5= 2RI 5
& and | operations |& mmon) L, (1) T o
R U o &
oo | Lo —8 E" 1 “word” = 49KDbits
Each “Mb’: ::E :|=,_ A A Al Al &
« “Symbol Recognition Cell” Sle 5513 eee m = Q| = 48K
« 1 State bit: “Should this HFA oy yivivivly
recognize thlS Symbol?" Automata Routing Matrix Structure
* Row driven only if symbol ok 7

* I UNIVERSITY OF

1)) NOTRE DAME

B il UNIVERSTTY/ VIRGINIA
Automata Processor Hardware Building Blocks

per chip
State Transition Element (STE) HW 49,152
Counter Element 768
Boolean Logic Element 2,304
Nine Programmable Functions
Report buffer 6,144

Figures courtesy of Micron

» Important: ALL elements on all chips see input symbol every cycle ,

B B UNIVERSITY,/ VIRGINIA
Automata Processor: Basic Operation

> STE “fires” when . "
Mb

= Symbol match @)
. . g |l

= AND the STE is active -
Eie

%; Mb

=l @

Mb

(1)

Mb

(0)

STE
Output

i

State State
Z Enable Bit

s State
Clock

Figures courtesy of Micron 22 \

B f UNIVERSITY/ VIRGINIA
Programming Options
» Currently, like other PCIe-attached accelerators
= Offload model, mediated by device driver
» Input
= RegEx
= GUI — Workbench

= C/Python APIs
= RAPID - C-like language

= ANML
» Compiling
= Input > ANML
= ANML-> Netlist J@@ Slfe
. _""L. e = O |
= Netlist > Place & route

Figures courtesy of Micron 26 ‘

B i UNIVERSITY, VIRGINIA
Bioinformatics: CRISPR Sites Discovery

» CRISPR: Clustered Regularly Interspaced Short
Palindromic Repeats

» Each repeat is followed by a spacer DNA and the spacer
could be either the same or different

» Mismatches/gaps may be allowed in repeats

» Potential applications: genome engineering, RNA editing,
Biomedicine, etc.

T ——

N Criserl
cas genes L OCUS

R E e Y 7 ’!ﬂj

l CRISPR locus transcription

46‘

B i UNIVERSITY, VIRGINIA
Preliminary Results

» Find 100 and 500 CRISPRs
» Allow different number of mismatches (1~5)
» Promising speedup achieved, from 40.7x to 402x

» Speedup is better for larger database

Running time Speedup
12000 500
=
§ 10000 - 400
= 8000 ‘ ‘ _%.300
E 6000 | g
” | | & 200
£ 4000 ‘ ‘ | | ‘ -
c
c . ‘ 100
S 2000 | . |
=, anl unl uwl N A :
m=1 m=2 m=3 m=4 m=5 m=1 m=2 m=3 m=4 m=5
number of mismatch allowed number of mismatch allowed
B 100 Cas-offinder ™ 100AP ™ 500 Cas-offinder 500 AP =100 speedup =500 speedup

48‘

