The Class NP-Complete (Sec. 7.4)

- $P = \{L | L$ decidable in poly time$\}$
- $NP = \{L | L$ verifiable in poly time$\}$
- Certainly all P is in NP
- Unknown if NP is bigger than P

(p. 299) **NP-Complete** = subset of NP where if any one is solvable in poly time, then all in NP-Complete are

- No one has found polynomial algorithms for any in it
- If someone finds such an algorithm for any problem in NP-Complete, then NP moves to P
- Unknown if NP-complete = NP

(p 300) **Theorem 7.27** SAT is in P iff P=NP

- 1^{st} NP complete problem
- Will prove any NP problem convertible into SAT
- Needs several intermediate theorems first
• (p. 261) Definition: **Language A is Turing-Reducible to B**, written **A ≤_T B**, if A is decidable relative to B using some function f:A→B

 • i.e. any w_A from A can be mapped/reduced to a w_B in B such that B’s decision on w_B can be converted into decision on w_A

 • If B decidable, then so is A.

• (p. 300) Definition 7.28: **f:Σ* → Σ* is a polynomial time computable function** if

 • Some polynomial time TM exists
 • which when started with w on tape,
 • halts with just f(w) on its tape,
• (Def. 7.29) Language A is **polynomial time reducible to** language to B (Written $A \leq_p B$) if

 • There is some polynomial time computable function f
 • Where w is in A iff $f(w)$ is in B
 • See Fig. 7.30, p.301
 • Thus for every string w in A there is a string $f(w)$ in B
 • And if w not in A, then $f(w)$ not in B
 • If you can write a polynomial time decider for B
 • then using f can write a polynomial time solver for A

• (p. 301) **Theorem 7.3.1.** If $A \leq_p B$ and B in P, then A in P

 • Given any w in A
 • Compute $w' = f(w)$ – poly time
 • Run Decider for B and output result – poly time
 • Sum of two poly time functions is still poly
• Two sample problems
• (p. 299) **SAT: The Satisfiability Problem**
 • SAT = \{wff | wff is satisfiable\}
 • Wff = Well-formed-Formula, made up of
 • Boolean Variables (may take on only 0 or 1)
 • Expressions built from AND, OR, NOT
• (p. 302) **CNF**: a wff is in **conjunctive normal form**:
 • The AND of a set of **clauses** (called a **conjunction**)
 • Where each clause is the OR of a set of **literals** called a **disjunction**
 • Where each literal is a variable or its complement
• **3SAT** = \{wff | wff in CNF with exactly 3 literals\}
• E.g. \((a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \ldots (a_k \lor b_k \lor c_k)\)

• Also: **CLIQUE** = \{<G,k> | G includes a k-clique\}
 • Where a k-clique has k vertices with edges to each other
 • CLIQUE known to be in NP (p. 296)
(p.302) **3SAT is polynomial time reducible to CLIQUE**

- Proof: convert wffs to graphs
 - Wff $C = C_1 \land C_2 \ldots \land C_k$ (i.e. k clauses)
 - $C_i = a_i \lor b_i \lor c_i$ where a_i, b_i, c_i all literals
 - f converts wff C to string $<G,k>$
 - G has k groups of 3 vertices (each group from a clause)
 - Each vertex in a triple corresponds to a literal
 - And named to match
 - All vertices in G have edges to all other vertices except
 - No edges between vertices in same triple
 - No edge between vertices with opposite labels (i.e. same variable, different signs)
 - See page 303 for example

\[
(w \mid x \mid y) \land (\neg x \mid \neg y \mid z) \land (\neg z \mid \neg w \mid \neg x)
\]

We'll connect vertices from different clauses if they are consistent.

Consider $y = \text{false}$, $x = \text{true}$, $w = \text{false}$, $z = \text{true}$

Is there a clique of size m where m is the number of clauses?

http://cs.nmu.edu/~mkowalcz/cs422w09/36/reduction2.jpg
(p. 303) Wff C is satisfiable iff G has a k-clique

- \Rightarrow: If wff has a satisfying assignment, then each clause has at least one literal that is true
 - Choose just one of these in each triple
 - By construction there must be an edge between all selected vertices & thus must be a k-clique
- \Leftarrow: If the graph has a k clique
 - Cannot include vertices in same triple (not permitted by construction)
 - Cannot include literals with opposite sides (not permitted by construction)
 - Assign value to variables to make each literal in k-clique true
 - Result is a satisfying assignment

- If CLIQUE is solvable in poly time, so is 3SAT and vv
• (p. 304) Def 7.34. B is NP-complete if both B in NP and every A in NP is polynomial time reducible to B

• (p. 304) Theorem 7.35. If B is in NP-complete and B in P, then $P = NP$
 • Any member can be converted to any other by series of polynomial time f

• (p. 304) Theorem 7.36. If B in NP-complete, and $B \leq_P C$ for some C in NP, then C is also NP-complete
 • Since B is NP-complete, every language in NP is polynomial time reducible to B,
 • But B is polynomial time reducible to C
 • Can compose the functions, so every language in NP is also polynomial time reducible to C
 • Thus C also in NP-Complete
• (p. 304) **COOK-LEVIN Theorem. SAT is NP-complete!**
 • First show SAT is in NP
 • A nondeterministic TM N can guess an assignment and then verify in polynomial time. Thus in NP
 • Now show any A in NP is polynomial time reducible to SAT
 • $n = |w|$, w in A
 • N an NTM that decides A in $O(n^k)$ for some k
 • Tape used is thus at most n^k cells in length
 • Construct **tableau** (table) of size $n^k \times n^k$ (p. 305)
 • Each row is a configuration (n^k of them)
 • 1st row is starting config of N on w
 • Each configuration at most n^k symbols long (columns – max tape length)
 • For convenience, each config starts & ends with #
 • Each entry in table called a **cell**
 • Let $C = Q \cup \Gamma \cup \{\#\} = \text{state set + tape chars}$
 • Each cell in table contains a symbol from C
 • A state or a symbol
 • Tableau is **accepting** if some row an accepting config
 • Now to show N accepts w is eqvt to question “does an accepting tableau exist?”
• Conversion f from A to SAT: Each cell in tableau has a symbol from C
 • Define a set of $2^k \times 2^k \times |C|$ Boolean variables $x_{i,j,s}$
 • i, j between 1 and 2^k
 • s over all symbols in C
 • $x_{i,j,s} = 1$ iff cell[i, j] contains symbol s
 • (p. 306) Define a wff made up of AND of 4 sets of clauses
 • $Wff_{cell} =$ clauses ensure 1 variable is true for each i,j
 • $Wff_{start} =$ clause that forces variables with $i=1$ to have initial config of N
 • $Wff_{accept} =$ clauses that guarantees an accepting configuration appears as some row
 • $Wff_{move} =$ clauses that guarantee that a move from the config for row i to row $i+1$ is valid
 • See 6 “windows” on p. 308 for rows i and $i+1$
 • Centered around state symbol in row i
 • This conversion can be done in poly time
 • Thus any problem in NP can have its decider (if it exists) converted into a SAT problem in poly time
 • Solving the SAT problem finds answer for A
Sample tableau (for deterministic TM accepting \((aa)^n\))

TM: decide \{\(\{aa\}\)^*\}

<table>
<thead>
<tr>
<th>state</th>
<th>tape</th>
<th>new state</th>
<th>new tape</th>
<th>dir</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>a</td>
<td>q1</td>
<td>a</td>
<td>R</td>
</tr>
<tr>
<td>q1</td>
<td>a</td>
<td>q0</td>
<td>a</td>
<td>R</td>
</tr>
<tr>
<td>q0</td>
<td>blank</td>
<td>q2</td>
<td>blank</td>
<td>L</td>
</tr>
</tbody>
</table>

Tableau for aa

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#</td>
<td>q0</td>
<td>a</td>
<td>a</td>
<td>bl</td>
<td>#</td>
</tr>
<tr>
<td>2</td>
<td>#</td>
<td>a</td>
<td>q1</td>
<td>a</td>
<td>bl</td>
<td>#</td>
</tr>
<tr>
<td>3</td>
<td>#</td>
<td>a</td>
<td>a</td>
<td>q0</td>
<td>bl</td>
<td>#</td>
</tr>
<tr>
<td>4</td>
<td>#</td>
<td>a</td>
<td>q2</td>
<td>a</td>
<td>bl</td>
<td>#</td>
</tr>
</tbody>
</table>

3 cells = 4x6x6, 144 variables

Variable Assignments

<table>
<thead>
<tr>
<th>i</th>
<th>s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>bl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>q0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>q2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>#</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>bl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>q0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>q1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>q2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>#</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>bl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>q0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>q2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>#</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>bl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>q0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>q2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
• Remember: showing a problem is NP-Complete
 • Show its in NP (i.e. NTM to create certificate & poly verifier)
 • Show some/any NP-Complete problem polynomially maps to it
 • Not always 3SAT!
• Other NP-Complete problems
 • (p. 310) **3SAT**
 • Do logic conversions from any SAT wff to 3 var clauses
 • (p. 311) **CLIQUE**
 • 3SAT reduces to it via Theorem 7.32 (p. 302)
 • 3 vertices for each clause
 • Labelled with literal name
 • Edges between all vertices, except:
 • Between vertices of a clause
 • Any vertex with any other labelled with the vertex’s literal complement
 • P. 303 addresses match of satisfying solution and k-clique
• (p. 312) **VERTEX-COVER** = \{<G,k>| G a graph with a subset of \(k \) vertices that has every edge in \(G \) touching at least one of the subset\}

• 3SAT reduces to \((G,k)\) \(k=m+2l, m=\# \text{ variables}, l=\# \text{ clauses}\)
 • For each variable \(x \) create *pair* of 2 vertices (labelled \(x \) and \(\sim x \)) with an edge between them
 • Each clause maps to a *triangle* labelled with variables
 • With edges to matching vertices from 1\(^{st}\) set
 • Total of \(2m + 3l \) vertices

• Assume satisfying assignment, show \(k \)-cover:
 • Include \(m \) vertices from pairs that match assignment
 • Covers edges to clause triangles and other of pair
 • Each triangle has at least 1 vertex in assignment, choose other 2 (\(2l \))

• Assume \(G \) has a \(k \)-cover, show satisfying assignment
 • Cover must have at least one vertex in each pair
 • Otherwise edge between pair not covered
 • Cover must have at least 2 vertices in each triangle
 • Otherwise cannot get edge in triangle covered
 • For \(k=m+2l \), above must be exact
 • \(M \) from pair must be satisfying (p. 313)
• (p. 314) **HAMPATH**: \{<G,s,t>| there is a path from s to t that goes thru all vertices exactly once.\}

• 3SAT of l variables & k clauses reduces to HAMPATH.

• For each variable in 3SAT construct *diamond* as Fig. 7.47
 • 3k+3 vertices in center row
 • 2-vertex pair for each clause + 1 border per clause
 • Lefthand vertex for “true” assignment
 • Righthand for “False”
 • Multiple paths from top to bottom
 • Left or right from top to center
 • Optionally across the center, in either direction
 • Left or right to lower vertex
 • Diamonds stacked on top of each other (Fig. 7.49)
 • Vertex s is topmost; vertex t is bottommost
 • Additionally, add separate vertex for each clause in 3SAT
 • K of them
 • If literal \(x_i\) appears in clause \(c_j\) (p. 316, Fig. 7.51)
 • Add edge from left vertex of \(j^{th}\) pair in center of diamond for \(x_i\) to vertex for \(c_j\)
 • Add edge from \(c_j\) to right vertex of \(j^{th}\) pair
 • If literal \(\neg x_i\) appears in clause \(c_j\), add edges in opposite
• If 3SAT is satisfiable, then Hamiltonian path from s to t
 • Starts at top, go left if x1 is true, right if false (Fig. 7.53)
 • Go across center, then down to top of next diamond
 • Repeat
 • Exception: for each clause cj pick one satisfying literal
 • Follow the breakout from the appropriate center row
 • Result: all vertices touched exactly once
• If HAMPATH exists in graph
 • If “normal”: top-down and thru center, with bypass,
 then can read out satisfying assignment
 • Fig. 7.54 (p. 318) cannot occur
• (p. 319) UHAMPATH – HAMPATH with undirected edges
• (p. 319) **SUBSET-SUM** \(S = \{(S,t) | S = \{x_1, \ldots\} \text{ and for some subset } Q = \{q_1, \ldots\} \text{ a subset of } S, \text{ sum of } y's = t\}

• 3SAT of \(l \) variables and \(k \) clauses reduces to a Subset-Sum problem with
 - 2\(l \) members of \(S = \{y_1, \ldots y_l, z_1, \ldots z_l\} \)
 - \(y_i \) and \(z_i \) for variable \(x_i \)
 - 2\(k \) members of \(Q = \{g_1, \ldots g_k, h_1, \ldots, h_k\} \)
 - and \(t = a \# \) described below

• Create table of p. 321
 - Each row of \(l+k \) #s:
 - \(l \) columns: 1 for each variable
 - and \(k \) more columns: 1 for each clause
 - Total of 2\(l \) + 2\(k \) + 1 rows:
 - 2\(l \) of them: variable \(x_i \) has 2 rows, labelled \(y_i \) and \(z_i \)
 - For row \(y_i \): all 0’s but a 1 in column for \(x_i \) and a 1 in each clause column having \(x_i \) as a literal
 - For row \(z_i \): all 0’s but a 1 in column for \(x_i \) and a 1 in each clause column having \(\neg x_i \) as a literal
 - 2\(k \) of them: 2 for each clause, labelled \(g_i \) and \(h_i \)
 - Row is all 0s but a single 1 in column for clause \(i \)
 - One row for \(t \): All 1s for variable columns; all 3s for clause columns
• Treat each row as digits of a number
• Assume wff is satisfiable, show subset
 • select Q as follows
 • If xi assigned true, select yi for Q
 • If xi assigned false, select zi for Q
 • Add up the selected rows
 • Exactly 1 for each of 1st l digits
 • Each of last k digits between 1 and 3
 • To make last k digits all 3
 • Select enough gs and hs to add up to 3
• Assume subset exists, show assignment
 • All digits in each # is either 0 or 1
 • Each column in table has at most 5 1’s
 • At most 3 from literals in clause
 • 2 from gs’ and hs’
 • Thus no carries possible
 • Thus for a 1 in each of first l columns, exactly 1 of ys’ and zs’ must be selected
 • This is assignment
Summary: from https://people.eecs.berkeley.edu/~vazirani/algorithms/chap8.pdf

<table>
<thead>
<tr>
<th>Hard problems (NP-complete)</th>
<th>Easy problems (in P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td>2SAT, HORN SAT</td>
</tr>
<tr>
<td>TRAVELING SALESMAN PROBLEM</td>
<td>MINIMUM SPANNING TREE</td>
</tr>
<tr>
<td>LONGEST PATH</td>
<td>SHORTEST PATH</td>
</tr>
<tr>
<td>3D MATCHING</td>
<td>BIPARTITE MATCHING</td>
</tr>
<tr>
<td>KNAPSACK</td>
<td>UNARY KNAPSACK</td>
</tr>
<tr>
<td>INDEPENDENT SET</td>
<td>INDEPENDENT SET on trees</td>
</tr>
<tr>
<td>INTEGER LINEAR PROGRAMMING</td>
<td>LINEAR PROGRAMMING</td>
</tr>
<tr>
<td>RUDRATA PATH</td>
<td>EULER PATH</td>
</tr>
<tr>
<td>BALANCED CUT</td>
<td>MINIMUM CUT</td>
</tr>
</tbody>
</table>

Figure 8.7 Reductions between search problems.
From https://en.wikipedia.org/wiki/NP-completeness

Circuit - SAT

SAT

3-CNF SAT

Clique Problem

Subset Problem

Vertex Cover Problem

Hamiltonian Cycle

Travelling Salesman