
1

pp. 292-311. The Class NP-Complete (Sec. 7.4)

 P = {L|L decidable in poly time}

 NP = {L|L verifiable in poly time}

 Certainly all P is in NP

 Unknown if NP is bigger than P

 (p. 299) NP-Complete = subset of NP where if any one

is solvable in poly time, then all in NP-Complete are

 No one has found polynomial algorithms for any in it

 If someone finds such an algorithm for any problem in NP-

Complete, then NP moves to P

 Unknown if NP-complete = NP

 (p 300) Theorem 7.27 SAT is in P iff P=NP

 1st NP complete problem

 Will prove any NP problem convertible into SAT

 Needs several intermediate theorems first

2

 (p. 261) Definition: Language A is Turing-Reducible to

B, written A≤TB, if A is decidable relative to B using

some function f:A->B that transforms instances

 i.e. any wA from A can be mapped/reduced to a wB in B

such that B’s decision on wB can be converted into

decision on wA

 If B decidable, then so is A.

 (p. 300) Definition 7.28: f:∑* -> ∑* is a polynomial

time computable function if

 Some polynomial time TM exists

 which when started with w on tape,

 halts with just f(w) on its tape,

function
f maps

w to f(w) in B

Decider
R for

B

Map decision
from B

to one for A

w a string
from A

Decision for

w instance

3

 (p. 300) Def. 7.29: Language A is polynomial time

reducible to language to B (Written A ≤P B) if

 There is some polynomial time computable function f

 Where w is in A iff f(w) is in B

 See Fig. 7.30, p.301

 Thus for every string w in A there is a string f(w) in B

 And if w not in A, then f(w) not in B

 If you can write a polynomial time decider for B

 then, using f, can write a polynomial time solver for A

 (p. 301) Theorem 7.3.1. If A ≤P B and B in P, then A in P

 Given any w in A

 Compute w’ = f(w) – poly time

 Run Decider for B and output result – poly time

 Sum of two poly time functions is still poly

function
f maps

w to f(w) in B

Decider
R for

B

Map decision
from B

to one for A

w a string
from A

Decision for

w instance

4

 Two sample problems

 (p. 299) SAT: The Satisfiability Problem

 SAT = {wff| wff is satisfiable}

 Wff = Well-formed-Formula, made up of

 Boolean Variables (may take on only 0 or 1)

 Expressions built from AND, OR, NOT

 (p. 302) CNF: a wff is in conjunctive normal form:

 The AND of a set of clauses (called a conjunction)

 Where each clause is the OR of a set of literals called

a disjunction

 Where each literal is a variable or its complement

 3SAT = {wff| wff in CNF has exactly 3 literals}

 E.g. (a1 v b1 v c1)&&(a2 v b2 v c2)&&… (ak v bk v ck)

 Also: CLIQUE ={<G,k>| G includes a k-clique}

 Where a k-clique has k vertices with edges to each other

 CLIQUE known to be in NP (p. 296)

5

 (p.302) 3SAT is polynomial time reducible to CLIQUE

 Proof: convert wffs to graphs

 Wff C = C1 ^ C2 … ^ Ck (i.e. k clauses)

 Ci = ai v bi v ci where ai, bi, ci all literals

 f converts wff C to string <G,k>

 G has k groups of 3 vertices (each group from a clause)

 Each vertex in a triple corresponds to a literal

 And named to match

 All vertices in G have edges to all other vertices except

 No edges between vertices in same triple

 No edge between vertices with opposite labels (i.e.

same variable, different signs)

 See page 303 for example

http://cs.nmu.edu/~mkowalcz/cs422w09/36/reduction2.jpg

6

 (p. 303) Wff C is satisfiable iff G has a k-clique

 =>: If wff has a satisfying assignment, then each clause has

at least one literal that is true

 Choose just one of these in each triple

 By construction there must be an edge between all

selected vertices & thus must be a k-clique

 <=: If the graph has a k clique

 Cannot include vertices in same triple (not permitted by

construction)

 Cannot include literals with opposite sides (not

permitted by construction)

 Assign value to variables to make each literal in k-clique

true

 Result is a satisfying assignment

 If CLIQUE is solvable in poly time, so is 3SAT and vv

7

 (p. 304) Def 7.34. B is NP-complete if both B in NP and

every A in NP is polynomial time reducible to B

 (p. 304) Theorem 7.35. If B is in NP-complete and B in

P, then P = NP

 Any member can be converted to any other by series of

polynomial time f

 (p. 304) Theorem 7.36. If B in NP-complete, and B≤PC

for some C in NP, then C is also NP-complete

 Since B is NP-complete, every language in NP is

polynomial time reducible to B,

 But B is polynomial time reducible to C

 Can compose the functions, so every language in NP is

also polynomial time reducible to C

 Thus C also in NP-Complete

8

 (p. 304) COOK-LEVIN Theorem. SAT is NP-complete!

 First show SAT is in NP

 A nondeterministic TM N can guess an assignment and

then verify in polynomial time. Thus in NP

 Now show any A in NP is polynomial time reducible to SAT

 n = |w|, w in A

 N an NTM that decides A in O(nk) for some k

 Tape used is thus at most nk cells in length

 Construct tableau (table) of size nk x nk (p. 305)

 nk rows (one for each step of NTM)

 Each row is a configuration

 1st row is starting configuration of N on w

 Each configuration at most nk symbols long

(columns – max tape length)

 For convenience, each config starts & ends with #

 Each entry in table called a cell

 A state or a symbol

 Let C = Q U Γ U {#} = state set + tape chars

 Tableau is accepting if some row an accepting config

 And row i+1 follows row i via valid transition

 Now to show N accepts w is eqvt to question “does an

accepting tableau exist?”

9

 Conversion f from A to SAT: Each cell in tableau has a

symbol from C

 Define a set of 2kx2kx|C| Boolean variables xi,j,s

 i, j between 1 and 2k

 s over all symbols in C

 xi,j,s = 1 iff cell[i,j] contains symbol s

 (p. 306) Define a wff made up of AND of 4 sets of

clauses

 Wffcell = clauses ensure 1 variable is true for each i,j

 Wffstart = clause that forces variables with i=1 to

have initial config of N

 Wffaccept = clauses that guarantees an accepting

configuration appears as some row

 Wffmove = clauses that guarantee that a move from

the config for row i to row i+1 is valid

 See 6 “windows” on p. 308 for rows I and i+1

 Centered around state symbol in row i

 This conversion can be done in poly time

 Thus any problem in NP can have its decider (if it

exists) converted into a SAT problem in poly time

 Solving the SAT problem finds answer for A

10

 Sample tableau (for deterministic TM accepting (aa)n)

TM: decide {(aa)*}

state tape new state new tape dir

q0 a q1 a R

q1 a q0 a R

q0 blank q2 blank L

1 2 3 4 5 6

1 # q0 a a bl #

2 # a q1 a bl #

3 # a a q0 bl #

4 # a q2 a bl #

3 cells = 4x6x6 144 variables

i s 1 2 3 4 5 6

1 # 1 0 0 0 0 1

1 a 0 0 1 1 0 0

1 bl 0 0 0 0 1 0

1 q0 0 1 0 0 0 0

1 q1 0 0 0 0 0 0

1 q2 0 0 0 0 0 0

2 # 1 0 0 0 0 1

2 a 0 1 0 1 0 0

2 bl 0 0 0 0 1 0

2 q0 0 0 0 0 0 0

2 q1 0 0 1 0 0 0

2 q2 0 0 0 0 0 0

3 # 1 0 0 0 0 1

3 a 0 1 1 0 0 0

3 bl 0 0 0 0 1 0

3 q0 0 0 0 1 0 0

3 q1 0 0 0 0 0 0

3 q2 0 0 0 0 0 0

4 # 1 0 0 0 0 1

4 a 0 1 0 1 0 0

4 bl 0 0 0 0 1 0

4 q0 0 0 0 0 0 0

4 q1 0 0 0 0 0 0

4 q2 0 0 1 0 0 0

j

Tableau for aa

Variable Assignments

n^ (+2)

St
ep

s
(e

ac
h

 a

co
n

fi
gu

ra
ti

o
n

)

11

12

 Remember: showing a problem is NP-Complete

 Show its in NP (i.e. NTM to create certificate & poly

verifier)

 Show some/any NP-Complete problem polynomially

maps to it

 Not always 3SAT!

 Other NP-Complete problems

 (p. 310) 3SAT

 Do logic conversions from any SAT wff to 3 var clauses

 (p. 311) CLIQUE

 3SAT reduces to it via Theorem 7.32 (p. 302)

 3 vertices for each clause

 Labelled with literal name

 Edges between all vertices, except:

 Between vertices of a clause

 Any vertex with any other labelled with the vertex’s

literal complement

 P. 303 addresses match of satisfying solution and k-

clique

13

 (p. 312) VERTEX-COVER = {<G,k>| G a graph with a subset

of k vertices that has every edge in G touching at least one

of the subset}

 3SAT reduces to (G,k) k=m+2l, m=# variables, l=#

clauses

 For each variable x create pair of 2 vertices (labelled x

and ~x) with an edge between them

 Each clause maps to a triangle labelled with variables

 With edges to matching vertices from 1st set

 Total of 2m + 3l vertices

 Assume satisfying assignment, show k-cover:

 Include m vertices from pairs that match assignment

 Covers edges to clause triangles and other of pair

 Each triangle has at least 1 vertex in assignment,

choose other 2 (2l)

 Assume G has a k-cover, show satisfying assignment

 Cover must have at least one vertex in each pair

 Otherwise edge between pair not covered

 Cover must have at least 2 vertices in each triangle

 Otherwise cannot get edge in triangle covered

 For k=m+2l, above must be exact

 M from pair must be satisfying (p. 313)

14

 (p. 314) HAMPATH: {<G,s,t>| there is a path from s to t

that goes thru all vertices exactly once.}

 3SAT of l variables & k clauses reduces to HAMPATH.

 For each variable in 3SAT construct diamond as Fig. 7.47

 3k+3 vertices in center row

 2-vertex pair for each clause + 1 border per clause

 Lefthand vertex for “true” assignment

 Righthand for “False”

 Multiple paths from top to bottom

 Left or right from top to center

 Optionally across the center, in either direction

 Left or right to lower vertex

 Diamonds stacked on top of each other (Fig. 7.49)

 Vertex s is topmost; vertex t is bottommost

 Additionally, add separate vertex for each clause in 3SAT

 K of them

 If literal xi appears in clause cj (p. 316, Fig. 7.51)

 Add edge from left vertex of j’th pair in center of

diamond for xi to vertex for cj

 Add edge from cj to right vertex of j’th pair

 If literal ~xi appears in clause cj, add edges in opposite

15

 If 3SAT is satisfiable, then Hamiltonian path from s to t

 Starts at top, go left if x1 is true, right if false (Fig. 7.53)

 Go across center, then down to top of next diamond

 Repeat

 Exception: for each clause cj pick one satisfying literal

 Follow the breakout from the appropriate center row

 Result: all vertices touched exactly once

 If HAMPATH exists in graph

 If “normal”: top-down and thru center, with bypass,

then can read out satisfying assignment

 Fig. 7.54 (p. 318) cannot occur

 (p. 319) UHAMPATH – HAMPATH with undirected

edges

16

 (p. 319) SUBSET-SUM S = {(S,t)| S = {x1, …) and for

some subset Q={q1,… } a subset of S, sum of y’s = t}

 3SAT of l variables and k clauses reduces to a Subset-Sum

problem with

 2l members of S = {y1,…yl,z1,…zl}

 yi and zi for variable xi

 2k members of Q = {g1,…gk,h1…,hk}

 and t=a # described below

 Create table as on p. 321

 Each row of l+k #s:

 l columns: 1 for each variable

 and k more columns: 1 for each clause

 Total of 2l + 2k + 1 rows:

 2l of them: variable xi has 2 rows, labelled yi and zi

 For row yi: all 0’s but a 1 in column for xi and a 1 in

each clause column having xi as a literal

 For row zi: all 0’s but a 1 in column for xi and a 1 in

each clause column having ~xi as a literal

 2k of them: 2 for each clause, labelled gi and hi

 Row is all 0s but a single 1 in column for clause i

 One row for t: All 1s for variable columns; all 3s

for clause columns

17

 Treat each row as digits of a number

 Assume wff is satisfiable, show subset

 select Q as follows

 If xi assigned true, select yi for Q

 If xi assigned false, select zi for Q

 Add up the selected rows

 Exactly 1 for each of 1st l digits

 Each of last k digits between 1 and 3

 To make last k digits all 3

 Select enough gs and hs to add up to 3

 Assume subset exists, show assignment

 All digits in each # is either 0 or 1

 Each column in table has at most 5 1’s

 At most 3 from literals in clause

 2 from gs’ and hs’

 Thus no carries possible

 Thus for a 1 in each of first l columns, exactly 1 of ys’

and zs’ must be selected

 This is assignment

18

 Summary: from https://people.eecs.berkeley.edu/~vazirani/algorithms/chap8.pdf

19

From https://en.wikipedia.org/wiki/NP-completeness

