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pp. 292-311. The Class NP-Complete (Sec. 7.4) 

 P = {L|L decidable in poly time} 

 NP = {L|L verifiable in poly time} 

 Certainly all P is in NP 

 Unknown if NP is bigger than P 

 (p. 299) NP-Complete = subset of NP where if any one 

is solvable in poly time, then all in NP-Complete are 

 No one has found polynomial algorithms for any in it 

 If someone finds such an algorithm for any problem in NP-

Complete, then NP moves to P  

 Unknown if NP-complete = NP 

 (p 300) Theorem 7.27 SAT is in P iff P=NP 

 1st NP complete problem 

 Will prove any NP problem convertible into SAT 

 Needs several intermediate theorems first 
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 (p. 261) Definition: Language A is Turing-Reducible to 

B, written A≤TB, if A is decidable relative to B using 

some function f:A->B that transforms instances 

 i.e. any wA from A can be mapped/reduced to a wB in B 

such that B’s decision on wB can be converted into 

decision on wA 

 

 If B decidable, then so is A. 

 (p. 300) Definition 7.28: f:∑* -> ∑* is a polynomial 

time computable function if 

 Some polynomial time TM exists 

 which when started with w on tape,  

 halts with just f(w) on its tape,  
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 (p. 300) Def. 7.29: Language A is polynomial time 

reducible to  language to B (Written A ≤P B) if  

 There is some polynomial time computable function f 

 Where w is in A iff f(w) is in B 

 See Fig. 7.30, p.301 

 Thus for every string w in A there is a string f(w) in B 

 And if w not in A, then f(w) not in B 

 If you can write a polynomial time decider for B  

 then, using f, can write a polynomial time solver for A 

 

 (p. 301) Theorem 7.3.1. If A ≤P B and B in P, then A in P 

 Given any w in A 

 Compute w’ = f(w) – poly time 

 Run Decider for B and output result – poly time 

 Sum of two poly time functions is still poly 
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 Two sample problems  

 (p. 299) SAT: The Satisfiability Problem  

 SAT = {wff| wff is satisfiable} 

 Wff = Well-formed-Formula, made up of 

 Boolean Variables (may take on only 0 or 1) 

 Expressions built from AND, OR, NOT 

 (p. 302) CNF: a wff is in conjunctive normal form: 

 The AND of a set of clauses (called a conjunction) 

 Where each clause is the OR of a set of literals called 

a disjunction 

 Where each literal is a variable or its complement 

 3SAT = {wff| wff in CNF has exactly 3 literals} 

 E.g. (a1 v b1 v c1)&&(a2 v b2 v c2)&&… (ak v bk v ck)  

 

 Also: CLIQUE ={<G,k>| G includes a k-clique} 

 Where a k-clique has k vertices with edges to each other 

 CLIQUE known to be in NP (p. 296) 
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 (p.302) 3SAT is polynomial time reducible to CLIQUE 

 Proof: convert wffs to graphs 

 Wff C = C1 ^ C2 … ^ Ck (i.e. k clauses) 

 Ci = ai v bi v ci where ai, bi, ci all literals 

 f converts wff C to string <G,k> 

 G has k groups of 3 vertices (each group from a clause) 

 Each vertex in a triple corresponds to a literal 

 And named to match 

 All vertices in G have edges to all other vertices except 

 No edges between vertices in same triple 

 No edge between vertices with opposite labels (i.e. 

same variable, different signs) 

 See page 303 for example 

 
http://cs.nmu.edu/~mkowalcz/cs422w09/36/reduction2.jpg 
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 (p. 303) Wff C is satisfiable iff G has a k-clique 

 =>: If wff has a satisfying assignment, then each clause has 

at least one literal that is true 

 Choose just one of these in each triple 

 By construction there must be an edge between all 

selected vertices & thus must be a k-clique 

 <=: If the graph has a k clique 

 Cannot include vertices in same triple (not permitted by 

construction) 

 Cannot include literals with opposite sides (not 

permitted by construction) 

 Assign value to variables to make each literal in k-clique 

true 

 Result is a satisfying assignment 

 If CLIQUE is solvable in poly time, so is 3SAT and vv 
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 (p. 304) Def 7.34. B is NP-complete if both B in NP and 

every A in NP is polynomial time reducible to B 

 (p. 304) Theorem 7.35. If B is in NP-complete and B in 

P, then P = NP 

 Any member can be converted to any other by series of 

polynomial time f  

 (p. 304) Theorem 7.36. If B in NP-complete, and B≤PC 

for some C in NP, then C is also NP-complete 

 Since B is NP-complete, every language in NP is 

polynomial time reducible to B, 

 But B is polynomial time reducible to C 

 Can compose the functions, so every language in NP is 

also polynomial time reducible to C 

 Thus C also in NP-Complete 
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 (p. 304) COOK-LEVIN Theorem. SAT is NP-complete! 

 First show SAT is in NP 

 A nondeterministic TM N can guess an assignment and 

then verify in polynomial time. Thus in NP 

 Now show any A in NP is polynomial time reducible to SAT 

 n = |w|, w in A 

 N an NTM that decides A in O(nk) for some k 

 Tape used is thus at most nk cells in length 

 Construct tableau (table) of size nk x nk (p. 305) 

 nk rows (one for each step of NTM) 

 Each row is a configuration  

 1st row is starting configuration of N on w 

 Each configuration at most nk symbols long 

(columns – max tape length) 

 For convenience, each config starts & ends with # 

 Each entry in table called a cell 

 A state or a symbol 

 Let C = Q U Γ U {#} = state set + tape chars 

 Tableau is accepting if some row an accepting config 

 And row i+1 follows row i via valid transition 

 Now to show N accepts w is eqvt to question “does an 

accepting tableau exist?” 



9 
 

 Conversion f from A to SAT: Each cell in tableau has a 

symbol from C 

 Define a set of 2kx2kx|C| Boolean variables xi,j,s  

 i, j between 1 and 2k 

 s over all symbols in C 

 xi,j,s = 1 iff cell[i,j] contains symbol s 

 (p. 306) Define a wff made up of AND of 4 sets of 

clauses 

 Wffcell = clauses ensure 1 variable is true for each i,j 

 Wffstart = clause that forces variables with i=1 to 

have initial config of N 

 Wffaccept = clauses that guarantees an accepting 

configuration appears as some row 

 Wffmove = clauses that guarantee that a move from 

the config for row i to row i+1 is valid 

 See 6 “windows” on p. 308 for rows I and i+1 

 Centered around state symbol in row i 

 This conversion can be done in poly time 

 Thus any problem in NP can have its decider (if it 

exists) converted into a SAT problem in poly time 

 Solving the SAT problem finds answer for A 
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 Sample tableau (for deterministic TM accepting (aa)n ) 

 

TM: decide {(aa)*}

state tape new state new tape dir

q0 a q1 a R

q1 a q0 a R

q0 blank q2 blank L

1 2 3 4 5 6

1 # q0 a a bl #

2 # a q1 a bl #

3 # a a q0 bl #

4 # a q2 a bl #

3 cells = 4x6x6 144 variables

i s 1 2 3 4 5 6

1 # 1 0 0 0 0 1

1 a 0 0 1 1 0 0

1 bl 0 0 0 0 1 0

1 q0 0 1 0 0 0 0

1 q1 0 0 0 0 0 0

1 q2 0 0 0 0 0 0

2 # 1 0 0 0 0 1

2 a 0 1 0 1 0 0

2 bl 0 0 0 0 1 0

2 q0 0 0 0 0 0 0

2 q1 0 0 1 0 0 0

2 q2 0 0 0 0 0 0

3 # 1 0 0 0 0 1

3 a 0 1 1 0 0 0

3 bl 0 0 0 0 1 0

3 q0 0 0 0 1 0 0

3 q1 0 0 0 0 0 0

3 q2 0 0 0 0 0 0

4 # 1 0 0 0 0 1

4 a 0 1 0 1 0 0

4 bl 0 0 0 0 1 0

4 q0 0 0 0 0 0 0

4 q1 0 0 0 0 0 0

4 q2 0 0 1 0 0 0

j
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 Remember: showing a problem is NP-Complete 

 Show its in NP (i.e. NTM to create certificate & poly 

verifier) 

 Show some/any NP-Complete problem polynomially 

maps to it 

 Not always 3SAT! 

 Other NP-Complete problems 

 (p. 310) 3SAT 

 Do logic conversions from any SAT wff to 3 var clauses 

 (p. 311) CLIQUE 

 3SAT reduces to it via Theorem 7.32 (p. 302) 

 3 vertices for each clause 

 Labelled with literal name 

 Edges between all vertices, except: 

 Between vertices of a clause 

 Any vertex with any other labelled with the vertex’s 

literal complement 

 P. 303 addresses match of satisfying solution and k-

clique 
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 (p. 312) VERTEX-COVER = {<G,k>| G a graph with a subset 

of k vertices that has every edge in G touching at least one 

of the subset} 

 3SAT reduces to (G,k) k=m+2l, m=# variables, l=# 

clauses 

 For each variable x create pair of 2 vertices (labelled x 

and ~x) with an edge between them 

 Each clause maps to a triangle labelled with variables 

 With edges to matching vertices from 1st set 

 Total of 2m + 3l vertices 

 Assume satisfying assignment, show k-cover: 

 Include m vertices from pairs that match assignment  

 Covers edges to clause triangles and other of pair 

 Each triangle has at least 1 vertex in assignment, 

choose other 2 (2l) 

 Assume G has a k-cover, show satisfying assignment 

 Cover must have at least one vertex in each pair 

 Otherwise edge between pair not covered 

 Cover must have at least 2 vertices in each triangle 

 Otherwise cannot get edge in triangle covered 

 For k=m+2l, above must be exact 

 M from pair must be satisfying (p. 313) 
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 (p. 314) HAMPATH: {<G,s,t>| there is a path from s to t 

that goes thru all vertices exactly once.} 

 3SAT of l variables & k clauses reduces to HAMPATH. 

 For each variable in 3SAT construct diamond as Fig. 7.47 

 3k+3 vertices in center row 

 2-vertex pair for each clause + 1 border per clause 

 Lefthand vertex for “true” assignment 

 Righthand for “False” 

 Multiple paths from top to bottom 

 Left or right from top to center 

 Optionally across the center, in either direction 

 Left or right to lower vertex 

 Diamonds stacked on top of each other (Fig. 7.49) 

 Vertex s is topmost; vertex t is bottommost 

 Additionally, add separate vertex for each clause in 3SAT 

 K of them 

 If literal xi appears in clause cj (p. 316, Fig. 7.51) 

 Add edge from left vertex of j’th pair in center of 

diamond for xi to vertex for cj 

 Add edge from cj to right vertex of j’th pair 

 If literal ~xi appears in clause cj, add edges in opposite 
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 If 3SAT is satisfiable, then Hamiltonian path from s to t 

 Starts at top, go left if x1 is true, right if false (Fig. 7.53) 

 Go across center, then down to top of next diamond 

 Repeat 

 Exception: for each clause cj pick one satisfying literal 

 Follow the breakout from the appropriate center row 

 Result: all vertices touched exactly once 

 If HAMPATH exists in graph 

 If “normal”: top-down and thru center, with bypass, 

then can read out satisfying assignment 

 Fig. 7.54 (p. 318) cannot occur 

 (p. 319) UHAMPATH – HAMPATH with undirected 

edges 
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 (p. 319) SUBSET-SUM S = {(S,t)| S = {x1, …) and for 

some subset Q={q1,… } a subset of S, sum of y’s = t}  

 3SAT of l variables and k clauses reduces to a Subset-Sum 

problem with  

 2l members of S = {y1,…yl,z1,…zl} 

 yi and zi for variable xi 

 2k members of Q = {g1,…gk,h1…,hk} 

 and t=a # described below 

 Create table as on p. 321 

 Each row of l+k #s:  

 l columns: 1 for each variable 

 and k more columns: 1 for each clause 

 Total of 2l + 2k + 1 rows:  

 2l of them: variable xi has 2 rows, labelled yi and zi 

 For row yi: all 0’s but a 1 in column for xi and a 1 in 

each clause column having xi as a literal 

 For row zi: all 0’s but a 1 in column for xi and a 1 in 

each clause column having ~xi as a literal 

 2k of them: 2 for each clause, labelled gi and hi 

 Row is all 0s but a single 1 in column for clause i 

 One row for t: All 1s for variable columns; all 3s 

for clause columns 
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 Treat each row as digits of a number 

 Assume wff is satisfiable, show subset 

 select Q as follows 

 If xi assigned true, select yi for Q 

 If xi assigned false, select zi for Q 

 Add up the selected rows 

 Exactly 1 for each of 1st l digits 

 Each of last k digits between 1 and 3 

 To make last k digits all 3 

 Select enough gs and hs to add up to 3 

 Assume subset exists, show assignment 

 All digits in each # is either 0 or 1 

 Each column in table has at most 5 1’s 

 At most 3 from literals in clause 

 2 from gs’ and hs’ 

 Thus no carries possible 

 Thus for a 1 in each of first l columns, exactly 1 of ys’ 

and zs’ must be selected 

 This is assignment 
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 Summary: from https://people.eecs.berkeley.edu/~vazirani/algorithms/chap8.pdf 

 

 

 

  



19 
 

From https://en.wikipedia.org/wiki/NP-completeness 

 

 


