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pp. 292-311. The Class NP (Sec. 7.3) 

 Issue: many interesting problems seem to have only 

“brute force” algorithms of exponential time 

  (p. 292) HAMPATH = {(G,s,t)|G is graph with 

Hamiltonian path from s to t} 

 Hamiltonian Path from s to t goes thru every other vertex 

 Easy decider by variant of algorithm for PATH 

 Modify  PATH to generate all possible paths 

 With test after each one to verify if path is Hamiltonian 

 Verifier runs in polynomial time 

 Keep a list of vertices 

 Follow path 

 Cross off matching vertex as each step 

 At end, if all vertices crossed off, accept; else reject 

 But the generator from PATH is exponential! 

 No known polynomial HAMPATH algorithm! 

 (p. 293) COMPOSITES = {x|x=pq, for p,q>1} 

 Verifier is trivial 

 No known polynomial generator 

 (p. 293) Not all problems have polynomial verifiers 

 e.g. not(HAMPATH) 
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 (p. 293) Definition 7.18. A verifier for language A is an 

algorithm V, where A = {w|V accepts <w,c> for some 

string c} 

 For all w in A there is some c where V accepts <w,c> 

 c is “extra information” called a certificate or proof 

 e.g. for above problems, c is a “guess” of answer 

 HAMPATH: a path that is a Hamiltonian 

 COMPOSITES: a divisor 

 The ones that work are solutions to problem 

 Equivalent to stating “a solution exists” 

 Time for V expressed as a function of w 

 Polynomial Time Verifier for V runs in polynomial time 

 Language A is polynomially verifiable if it has a 

polynomial time verifier 

 p. 294: example of NTM N1 for HAMPATH that works in 

“nondeterministic polynomial time” 

 Remember time of NTM is time used by longest branch 

 Step 1 “generates” a solution (magically) as a series of 

vertex #s 

 Step 2 ensures no repeats 

 Step 3 ensures starts at s and ends at p 

 Step 4 is the polynomial verifier that checks edges exist 
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(p. 294) Definition 7.19: NP is class of languages that 

have polynomial time verifiers 

 NP stands for “Non deterministic Polynomial” 

 HAMPATH and COMPOSITES both in class NP 

 (p, 294) Theorem 7.20 Language A is in NP iff it is 

decided by some polynomial time NTM 

 Proof: if A in NP then decided by NTM in polynomial time 

 Let V be matching polynomial verifier for A of O(nk) 

 Define NTM N as follows: For input w of length n, 

 Nondeterministically select string c of length ≤ nk 

 c is “solution” 

 Run V on <w,c> 

 If V accepts, accept, else reject 

 Proof: if Poly time NTM N exists, then A is in NP 

 V constructed on <w,c> as follows 

 Simulate N on input w, treating each symbol of c as 

description of NTM choice to make at each step 

 If this branch accepts, accept, else reject 

 For HAMPATH 

 W is <G,s,t> 

 c is a path 
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 (p. 293) NTIME(t(n)) = {L|L is language decided by 

some O(t(n)) time NTM}  

 NP = Uk NTIME(nk) for all k 

 (p. 295) CLIQUE = {<G,k>|G undirected graph with k-

clique} in in NP 

 k-clique = set of k vertices with edges between each pair 

of vertices in set 

 (p. 296) Proof by demonstrating polynomial time verifier 

 (p. 297) SUBSET-SUM = {<S,t>|S = {x1, …xk} and for 

some {y1, …, yl} subset of S and Σyi = t} 

 (p. 299) SAT ={<wff>|wff a satisfiable Boolean formula} 

 wff is well-formed-formula constructed from 

 Boolean variables 

 Boolean operations AND, OR, NOT 

 Satisfiability: test if there is a substitution of 0s and 1s to 

variables that makes the wff true 

 Summary: 

 P = class that can be decided quickly 

 NP = class that can be verified quickly 

 Biggest question in CS: Is P = NP, or P a subset of NP? 

 Is there a language in NP that is not in P? 


