Issue: many interesting problems seem to have only “brute force” algorithms of exponential time

(p. 292) \(\text{HAMPATH} = \{(G,s,t) | G \text{ is graph with Hamiltonian path from } s \text{ to } t \} \)

Hamiltonian Path from \(s \) to \(t \) goes thru every other vertex

Easy decider by variant of algorithm for PATH

- Put PATH in a loop to generate all possible paths
- With test after each one to verify if path is Hamiltonian
- Verifier runs in polynomial time
 - Keep a list of vertices
 - Follow path
 - Cross off matching vertex as each step
 - At end, if all vertices crossed off, accept; else reject
- But the generator from PATH is exponential!

No known polynomial HAMPATH algorithm

(p. 293) \(\text{COMPOSITES} = \{x | x=pq, \text{ for } p,q>1 \} \)

Verifier is trivial

No known polynomial generator

(p. 293) Not all problems have polynomial verifiers
 - e.g. \(\text{not(HAMPATH)} \)
(p. 293) Definition 7.18. A verifier for language A is an algorithm V, where $A = \{w | V$ accepts $<w,c>$ for some string $c\}$

- c is “extra information” called a **certificate** or **proof**
- e.g. for above problems, c is a “guess” of answer
 - HAMPATH: a path that is a Hamiltonian
 - COMPOSITES: a divisor
- The ones that work are solutions to problem
- Equivalent to stating “a solution exists”
- Time for V expressed as a function of w
 - **Polynomial Time Verifier** for V runs in polynomial time
- Language A is **polynomially verifiable** if it has a polynomial time verifier

p. 294: example of NTM N_1 for HAMPATH that works in “nondeterministic polynomial time”

- Remember time of NTM is time used by longest branch
- Step 1 “generates” a solution (magically) as a series of vertex #s
- Step 2 ensures no repeats
- Step 3 ensures starts at s and ends at p
- Step 4 is the **polynomial verifier** that checks edges exist
• (p. 294) Definition 7.19: **NP is class of languages that have polynomial time verifiers**
 • HAMPATH and COMPOSITES both in class NP
• (p. 294) **Theorem 7.20 Language A is in NP iff it is decided by some polynomial time NTM**
 • Proof: if A in NP then decided by NTM in polynomial time
 • Let V be matching polynomial verifier for A of \(O(n^k) \)
 • Define NTM N as follows: For input w of length n,
 • Nondeterministically select string c of length \(\leq n^k \)
 • C is “solution”
 • Run V on \(<w,c>\)
 • If V accepts, accept, else reject
 • Proof: if Poly time NTM N exists, then A is in NP
 • V constructed on \(<w,c>\) as follows
 • Simulate N on input w, treating each symbol of c as description of NTM choice to make at each step
 • If this branch accepts, accept, else reject
 • For HAMPATH
 • W is \(<G,s,t>\)
 • c is a path
• (p. 293) **NTIME(t(n)) = \{L|L is language decided by some O(t(n)) time NTM\}

• **NP = U_k NTIME(n^k)** for all k

• (p. 295) **CLIQUE = \{<G,k>|G undirected graph with k-clique\}** in NP
 - k-clique = set of k vertices with edges between each pair of vertices in set

• (p. 296) Proof by demonstrating polynomial time verifier

• (p. 297) **SUBSET-SUM = \{<S,t>|S = \{x_1, …x_k\} and for some \{y_1, …, y_l\} subset of S and Σy_i = t\}**

• (p. 299) **SAT =\{<wff>|wff a satisfiable Boolean formula\}**
 - **wff** is well-formed-formula constructed from
 - Boolean variables
 - Boolean operations AND, OR, NOT
 - **Satisfiability**: test if there is a substitution of 0s and 1s to variables that makes the wff true

• Summary:
 - P = class that can be **decided** quickly
 - NP = class that can be **verified** quickly

• **Biggest question in CS: Is P = NP, or P a subset of NP?**
 - Is there a language in NP that is not in P?