
1

pp. 292-311. The Class NP (Sec. 7.3)

 Issue: many interesting problems seem to have only

“brute force” algorithms of exponential time

 (p. 292) HAMPATH = {(G,s,t)|G is graph with

Hamiltonian path from s to t}

 Hamiltonian Path from s to t goes thru every other vertex

 Easy decider by variant of algorithm for PATH

 Modify PATH to generate all possible paths

 With test after each one to verify if path is Hamiltonian

 Verifier runs in polynomial time

 Keep a list of vertices

 Follow path

 Cross off matching vertex as each step

 At end, if all vertices crossed off, accept; else reject

 But the generator from PATH is exponential!

 No known polynomial HAMPATH algorithm!

 (p. 293) COMPOSITES = {x|x=pq, for p,q>1}

 Verifier is trivial

 No known polynomial generator

 (p. 293) Not all problems have polynomial verifiers

 e.g. not(HAMPATH)

2

 (p. 293) Definition 7.18. A verifier for language A is an

algorithm V, where A = {w|V accepts <w,c> for some

string c}

 For all w in A there is some c where V accepts <w,c>

 c is “extra information” called a certificate or proof

 e.g. for above problems, c is a “guess” of answer

 HAMPATH: a path that is a Hamiltonian

 COMPOSITES: a divisor

 The ones that work are solutions to problem

 Equivalent to stating “a solution exists”

 Time for V expressed as a function of w

 Polynomial Time Verifier for V runs in polynomial time

 Language A is polynomially verifiable if it has a

polynomial time verifier

 p. 294: example of NTM N1 for HAMPATH that works in

“nondeterministic polynomial time”

 Remember time of NTM is time used by longest branch

 Step 1 “generates” a solution (magically) as a series of

vertex #s

 Step 2 ensures no repeats

 Step 3 ensures starts at s and ends at p

 Step 4 is the polynomial verifier that checks edges exist

3

(p. 294) Definition 7.19: NP is class of languages that

have polynomial time verifiers

 NP stands for “Non deterministic Polynomial”

 HAMPATH and COMPOSITES both in class NP

 (p, 294) Theorem 7.20 Language A is in NP iff it is

decided by some polynomial time NTM

 Proof: if A in NP then decided by NTM in polynomial time

 Let V be matching polynomial verifier for A of O(nk)

 Define NTM N as follows: For input w of length n,

 Nondeterministically select string c of length ≤ nk

 c is “solution”

 Run V on <w,c>

 If V accepts, accept, else reject

 Proof: if Poly time NTM N exists, then A is in NP

 V constructed on <w,c> as follows

 Simulate N on input w, treating each symbol of c as

description of NTM choice to make at each step

 If this branch accepts, accept, else reject

 For HAMPATH

 W is <G,s,t>

 c is a path

4

 (p. 293) NTIME(t(n)) = {L|L is language decided by

some O(t(n)) time NTM}

 NP = Uk NTIME(nk) for all k

 (p. 295) CLIQUE = {<G,k>|G undirected graph with k-

clique} in in NP

 k-clique = set of k vertices with edges between each pair

of vertices in set

 (p. 296) Proof by demonstrating polynomial time verifier

 (p. 297) SUBSET-SUM = {<S,t>|S = {x1, …xk} and for

some {y1, …, yl} subset of S and Σyi = t}

 (p. 299) SAT ={<wff>|wff a satisfiable Boolean formula}

 wff is well-formed-formula constructed from

 Boolean variables

 Boolean operations AND, OR, NOT

 Satisfiability: test if there is a substitution of 0s and 1s to

variables that makes the wff true

 Summary:

 P = class that can be decided quickly

 NP = class that can be verified quickly

 Biggest question in CS: Is P = NP, or P a subset of NP?

 Is there a language in NP that is not in P?

