Issue: many interesting problems seem to have only “brute force” algorithms of exponential time

(p. 292) HAMPATH = \{ (G,s,t) | G is graph with Hamiltonian path from s to t \}

Hamiltonian Path from s to t goes thru every other vertex

Easy decider by variant of algorithm for PATH

Modify PATH to generate all possible paths

With test after each one to verify if path is Hamiltonian

Verifier runs in polynomial time

Keep a list of vertices

Follow path

Cross off matching vertex as each step

At end, if all vertices crossed off, accept; else reject

But the generator from PATH is exponential!

No known polynomial HAMPATH algorithm!

(p. 293) COMPOSITES = \{ x | x=pq, for p,q>1 \}

Verifier is trivial

No known polynomial generator

(p. 293) Not all problems have polynomial verifiers

e.g. not(HAMPATH)
• (p. 293) Definition 7.18. **A verifier for language A is an algorithm V,** where \(A = \{ w | V \text{ accepts } <w,c> \text{ for some string } c \} \)

• For all \(w \) in \(A \) there is some \(c \) where \(V \) accepts \(<w,c> \)
• \(c \) is “extra information” called a **certificate** or **proof**
• e.g. for above problems, \(c \) is a “guess” of answer
 • HAMPATH: a path that is a Hamiltonian
 • COMPOSITES: a divisor
• The ones that work are solutions to problem
• Equivalent to stating “a solution exists”
• Time for \(V \) expressed as a function of \(w \)
 • **Polynomial Time Verifier** for \(V \) runs in polynomial time
• Language \(A \) is **polynomially verifiable** if it has a polynomial time verifier

• p. 294: example of NTM \(N_1 \) for HAMPATH that works in “nondeterministic polynomial time”
 • Remember time of NTM is time used by longest branch
 • Step 1 “generates” a solution (magically) as a series of vertex #s
 • Step 2 ensures no repeats
 • Step 3 ensures starts at \(s \) and ends at \(p \)
 • Step 4 is the **polynomial verifier** that checks edges exist
Definition 7.19: **NP is class of languages that have polynomial time verifiers**

- NP stands for “Non deterministic Polynomial”
- HAMPATH and COMPOSITES both in class NP
- (p, 294) **Theorem 7.20 Language A is in NP iff it is decided by some polynomial time NTM**

 - Proof: if A in NP then decided by NTM in polynomial time
 - Let V be matching polynomial verifier for A of $O(n^k)$
 - Define NTM N as follows: For input w of length n,
 - Nondeterministically select string c of length $\leq n^k$
 - c is “solution”
 - Run V on <w,c>
 - If V accepts, accept, else reject
 - Proof: if Poly time NTM N exists, then A is in NP
 - V constructed on <w,c> as follows
 - Simulate N on input w, treating each symbol of c as description of NTM choice to make at each step
 - If this branch accepts, accept, else reject
 - For HAMPATH
 - W is <G,s,t>
 - c is a path
(p. 293) \(\text{NTIME}(t(n)) = \{L | L \text{ is language decided by some } O(t(n)) \text{ time NTM}\} \)

\(\text{NP} = \bigcup_k \text{NTIME}(n^k) \) for all \(k \)

(p. 295) \(\text{CLIQUE} = \{<G,k> | G \text{ undirected graph with } k\text{-clique}\} \) is in NP

- \(k\)-clique = set of \(k \) vertices with edges between each pair of vertices in set

(p. 296) Proof by demonstrating polynomial time verifier

(p. 297) \(\text{SUBSET-SUM} = \{<S,t> | S = \{x_1, \ldots, x_k\} \text{ and for some } \{y_1, \ldots, y_l\} \text{ subset of } S \text{ and } \sum y_i = t\} \)

(p. 299) \(\text{SAT} = \{<\text{wff}> | \text{wff a satisfiable Boolean formula}\} \)

- \(\text{wff} \) is well-formed-formula constructed from
 - Boolean variables
 - Boolean operations AND, OR, NOT

- **Satisfiability**: test if there is a substitution of 0s and 1s to variables that makes the wff true

Summary:

- **\(P = \text{class that can be decided quickly} \)**
- **\(NP = \text{class that can be verified quickly} \)**

Biggest question in CS: Is \(P = \text{NP} \), or \(P \) a subset of \(\text{NP} \)?
- Is there a language in \(\text{NP} \) that is not in \(P \)?