(pp. 111-125) Push Down Automata (Sec. 2.2)

- Push Down Automata (PDA) = DFA + Stack
 - Capable of recognizing CFLs
- Difference from NFA: at each transition
 - Can read (& *pop*) current top value on stack in δ arguments
 - Each δ rule specifies not just new state but optional value to *push* onto a stack
- Stack depth may become infinite allows recognizing languages with arbitrary components
 - Notional execution for $\{0^n1^n\}$ –non-regular language
 - At start, for each 0 input, push a 0 to stack
 - At first 1, for each 1 input, pop a 0 off stack
 - If stack & input run out at same time, accept
 - Else reject
- See Fig. 2.12 on p. 110

- Formal Definition: PDA M = 6 tuple (Q, Σ , Γ , δ , q_0 , F)
 - Same kind of nondeterminism as in NFA
 - Q, Σ , q_0 , F as before
 - F ("gamma") is stack alphabet: symbols that may be on stack
 - Need not have any relation to Σ
 - δ : Q x Σ_{ε} x Γ_{ε} -> P(Q x Γ_{ε})
 - Σ_ε = Σ U ε
 - $\Gamma_{\epsilon} = \Gamma \cup \epsilon$
 - A rule $\delta(q, x, s)$ is applicable only if
 - Machine is in state q
 - x from Σ matches next character on input
 - If $x = \varepsilon$, then we don't need a character on input
 - Like ε rules in NFA
 - s from Γ matches the current top of the stack
 - If s = ε, then we don't look at stack top
 - If a rule has a non-ε s and is chosen:
 - s is "popped" off stack before rhs is performed
 - Range of a δ rule is a (state, z) where z in Γ_{ϵ}
 - If z in Γ, push z onto stack
 - If z=ε, leave stack unchanged.

- Computation of PDA M
 - Assume
 - Input string w can be written as w = w₁, ...w_m, each character w_i either in Σ or an ε
 - I.e. whatever input is, we can assume εs can be assumed present between any 2 characters
 - Sequence of states r₀, r₁, ...r_m (i.e. |w|+1 states)
 - Sequence of stack strings s₀, s₁, ...s_m
 - Each string is the stack at some time
 - Where leftmost symbol of each string is the "top"
 - A valid computation is when
 - $r_0 = q_0$ and r_m is in F
 - s₀ = ε (stack is initially empty)
 - For i = 0 to m-1
 - (r_{i+1}, b) is in $\delta(r_i, w_i, a)$ where
 - $s_i = at$, a in Γ_{ϵ} , t in Γ^* (i.e. a is top, t rest of stack)
 - If a != ε, we **pop** it off of stack before update
 - $s_{i+1} = bt$, a in Γ_{ϵ} , t stack after above step
 - If b != ε, we **push** it onto stack

- State diagrams similar to NFA but labels augmented
 - Instead of "a", write "a,b->c" where
 - a in Σ_ϵ is character on input that causes transition
 - a = ε says ignore input
 - b in Γ_{ϵ} must likewise match stack top
 - b = ε says ignore stack top
 - b != ε says we must match, AND pop after transition
 - Shorthand "a->c" for "a,ε -> c"
 - c in Γ_{ϵ} give stack top after transition
 - $c = \epsilon$ implies push nothing
 - $c != \epsilon$ implies push c
 - **Shorthand** "a,b" for "a,b->ε"
 - Summary of stack changes for a,b->c. Assume s_i = xt

b (match for stack)	c (new stack top)	New stack s _{i+1}
b = ε	c = ε	NOP : s _{i+1} = s _i = xt
b = ε	c != ε	Push: s _{i+1} = cxt
b != ε i.e. x=b, s _i =bt	c = ε	Pop : s _{i+1} = t
b != ε i.e. x=b, s _i =bt	c != ε	Change: s _{i+1} = ct

• See pages 112-116 for examples