## (pp. 111-125) Push Down Automata (Sec. 2.2)

- Push Down Automata (PDA) = DFA + Stack
- Capable of recognizing CFLs
- Difference from NFA: at each transition
- Can read (\& pop) current top value on stack in $\delta$ arguments
- Each $\delta$ rule specifies not just new state but optional value to push onto a stack
- Stack depth may become infinite - allows recognizing languages with arbitrary components
- Notional execution for $\left\{0^{n} 1^{n}\right\}$-non-regular language
- At start, for each 0 input, push a 0 to stack
- At first 1, for each 1 input, pop a 0 off stack
- If stack \& input run out at same time, accept
- Else reject
- See Fig. 2.12 on p. 110
- Formal Definition: PDA M = 6 tuple ( $\left.Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$
- Same kind of nondeterminism as in NFA
- $Q, \Sigma, q_{0}, F$ as before
- 「 ("gamma") is stack alphabet: symbols that may be on stack
- Need not have any relation to $\Sigma$
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P\left(Q \times \Gamma_{\varepsilon}\right)$
- $\Sigma_{\varepsilon}=\Sigma U \varepsilon$
- $\Gamma_{\varepsilon}=\Gamma U \varepsilon$
- A rule $\delta(q, x, s)$ is applicable only if
- Machine is in state $q$
- x from $\Sigma$ matches next character on input
- If $x=\varepsilon$, then we don't need a character on input
- Like $\varepsilon$ rules in NFA
- $s$ from $\Gamma$ matches the current top of the stack
- If $s=\varepsilon$, then we don't look at stack top
- If a rule has a non- $\varepsilon$ s and is chosen:
- $s$ is "popped" off stack before rhs is performed
- Range of a $\delta$ rule is a (state, z ) where z in $\Gamma_{\varepsilon}$
- If $z$ in $\Gamma$, push $z$ onto stack
- If $z=\varepsilon$, leave stack unchanged.
- Computation of PDA M
- Assume
- Input string w can be written as $w=w_{1}, \ldots w_{m}$, each character $w_{i}$ either in $\Sigma$ or an $\varepsilon$
- I.e. whatever input is, we can assume $\varepsilon$ s can be assumed present between any 2 characters
- Sequence of states $r_{0}, r_{1}, \ldots r_{m}$ (i.e. $|w|+1$ states)
- Sequence of stack strings $s_{0}, s_{1}, \ldots s_{m}$
- Each string is the stack at some time
- Where leftmost symbol of each string is the "top"
- A valid computation is when
- $r_{0}=q_{0}$ and $r_{m}$ is in $F$
- $\mathrm{s}_{0}=\varepsilon$ (stack is initially empty)
- For $\mathrm{i}=0$ to $\mathrm{m}-1$
- $\left(r_{i+1}, b\right)$ is in $\delta\left(r_{i}, w_{i}, a\right)$ where
- $s_{i}=a t, a$ in $\Gamma_{\varepsilon}, t$ in $\Gamma^{*}$ (i.e. a is top, $t$ rest of stack)
- If a != $\varepsilon$, we pop it off of stack before update
- $s_{i+1}=b t, a$ in $\Gamma_{\varepsilon}, t$ stack after above step
- If b != $\varepsilon$, we push it onto stack
- State diagrams similar to NFA but labels augmented
- Instead of "a", write "a,b->c" where
- a in $\Sigma_{\varepsilon}$ is character on input that causes transition
- $a=\varepsilon$ says ignore input
- b in $\Gamma_{\varepsilon}$ must likewise match stack top
- $b=\varepsilon$ says ignore stack top
- $b$ != $\varepsilon$ says we must match, AND pop after transition
- Shorthand "a->c" for "a, $\varepsilon$-> c"
- c in $\Gamma_{\varepsilon}$ give stack top after transition
- $\mathrm{c}=\varepsilon$ implies push nothing
- c != $\varepsilon$ implies push c
- Shorthand "a,b" for "a,b->ع"
- Summary of stack changes for $a, b->c$. Assume $s_{i}=x t$

| $b$ (match for stack) | $\mathbf{c}$ (new stack top) | New stack $\mathrm{s}_{\mathrm{i}+1}$ |
| :---: | :---: | :---: |
| $\mathrm{~b}=\varepsilon$ | $\mathrm{c}=\varepsilon$ | NOP: $\mathrm{s}_{\mathrm{i}+1}=\mathrm{s}_{\mathrm{i}}=\mathrm{xt}$ |
| $\mathrm{b}=\varepsilon$ | $\mathrm{c}!=\varepsilon$ | Push: $\mathrm{s}_{\mathrm{i}+1}=\mathrm{cxt}$ |
| $\mathrm{b}!=\varepsilon$ i.e. $\mathrm{x}=\mathrm{b}, \mathrm{s}_{\mathrm{i}}=\mathrm{bt}$ | $\mathrm{c}=\varepsilon$ | Pop: $\mathrm{s}_{\mathrm{i}+1}=\mathrm{t}$ |
| $\mathrm{b}!=\varepsilon$ i.e. $\mathrm{x}=\mathrm{b}, \mathrm{s}_{\mathrm{i}}=\mathrm{bt}$ | $\mathrm{c}!=\varepsilon$ | Change: $\mathrm{s}_{\mathrm{i}+1}=\mathrm{ct}$ |

- See pages 112-116 for examples

