pp. 215-227. Undecidable Language Problems (Sec. 5.1)

- Remember A_{TM}={<M,w>| M accepts w} is undecidable
 - When M does not accept w cannot decide if its because it will eventually reject or loop

- Also A clearly cannot be "harder" than B, so if B is "decidable" then so is A.
- Standard reduction:
 - Assume language L of interest is decidable by R
 - Show that solving L means we can solve A_{TM}
 - By mapping any instance of A_{TM} into L
 - Thus if R exists, then we can construct a TM S so that A_{TM} is decidable
 - But this is impossible, so no such R can exist

- HALT_{TM} = {<M,w>| M is a TM that halts on w}
- (p. 216) Theorem 5.1. HALT_{TM} is undecidable
 - Proof by contradiction. Assume $HALT_{TM}$ is decidable by R
 - Build a decider for A_{TM}
 - Given $\langle M, w \rangle$ instance from A_{TM} , pass unchanged to R
 - If R finds M halts on w, R halts and accepts
 - If R finds M doesn't halt on w, R halts and rejects

- Construct TM S to decide A_{TM} from R as follows
 - Run R on <M,w>
 - If R rejects, reject (we know M loops on w)
 - If R accepts (we know M halts on w):
 - Simulate M on w until it halts
 - If M accepts w then S accepts
 - If M rejects w, then S rejects
 - If R exists, then S as constructed above decides A_{TM}
 - But A_{TM} is undecidable, so R cannot exist

- E_{TM} = {<M>| M is a TM and L(M)=Φ}
- (p. 217) **Theorem 5.2** E_{TM} is undecidable
 - Assume R decides E_{TM} , i.e. given $\langle M \rangle$ as input, R
 - accepts if L(M) is empty
 - rejects if L(M) is not

- Use R to construct an S that decides A_{TM} as follows
 - Given any <M,w>, first convert M to <u>M</u>₁ as follows
 - On any input x, If x != w, M₁ rejects
 - If x = w, run M on w and accept if M does
 - Only string M₁ can possibly accept is w
 - Now define S on an input <M,w> as follows
 - Construct M₁ from M
 - Run R on <M₁> (We are assuming R exists)
 - If R accepts (i.e. L(M) = Φ), S rejects (w not in L(M))
 - else if R rejects (L(M₁) not empty), S accepts
 - w accepted by M
- If R were decider for E_{TM} , then S is a decider for A_{TM}

- (p. 218) REGULAR_{TM}={<M>|M a TM & L(M) is regular}
- Theorem 5.3 REGULAR_{TM} is undecidable
 - Assume REGULAR_{TM} is decidable by some TM R
 - Given some M, R accepts if L(M) is regular
 - R rejects if L(M) is NOT regular
 - Construct S from R as decider for A_{TM} ={<M,w>} as follows
 - Take M from its input $\langle M, w \rangle$ and modify M to M₂ that
 - recognizes non-regular language {0ⁿ1ⁿ|n≥0} if M does not accept w
 - recognizes regular language Σ^* if M accepts w
 - M₂ constructed ONLY for purpose of feeding its description into assumed decider R for REGULAR_{TM}
 - Run R on $\langle M_2 \rangle$
 - If R accepts, then <M₂> recognizes a regular language
 - Which means M accepts w
 - If R rejects, then M₂ recognizes a non-reg language
 - Which means that M does not accept w
 - Which makes R a decider for $A_{\ensuremath{\mathsf{TM}}}$

- (p. 219 & Prob. 5.28) **Rice's Theorem**:
 - Let P be any property of the language of a TM
 - L_P= {<M>| M a TM such that L(M) has property P}
 - L_P contains some but not all TMs
 - Whenever L(M1)=L(M2), \langle M1> ϵ L_P iff \langle M2> ϵ L_P
 - Thus L_P is undecidable
- Above proved undecidability from A_{TM}
 - but other undecidable languages such as E_{TM} usable
- EQ_{TM} = {<M1, M2>| M1, M2 TMs, and L(M1)=L(M2)}
- (p. 220) Theorem 5.4 EQ_{TM} is undecidable
 - Assume TM R decides EQ_{TM}
 - Construct S to decide E_{TM} (not A_{TM}) as follows:
 - On input $\langle M \rangle$ to E_{TM}
 - Run R on <M,M1> where M1 a TM that rejects all inputs
 - If R accepts (i.e. M matches machine with empty language), then S accepts (L(M) is emoty)
 - If R rejects (M!=M1) then S rejects (M accepts something)
 - If R exists we now have in S a decider for E_{TM}
 - Not possible, so R cannot exist

- (p. 220) Reductions via Computational Histories
- Accepting Computational History of M given w
 - Sequence of configurations C_1 , ... C_l where
 - C_1 is start, C_l is accepting, and C_i legally follows from C_{i-1}
 - Remember a configuration = ua q_i bv, b under tape head
 - Note this is finite in length
- Rejection Computational History is similar
- (p. 221) Linear Bounded Automata (LBA)
 - TM with finite tape
 - Cannot move off of original tape: Off left or into "blanks"
- (p. 222) Lemma 5.8. Assume M is an LBA with exactly q states & g symbols in Γ. There are exactly qngⁿ possible configurations of tape of length n.
- A_{LBA} = {<M,w>| M an LBA that accepts w}
- (p. 222) Theorem 5.9 A_{LBA} is decidable
 - Have decider L keep track of each configuration that M enters while processing w
 - If we ever enter same configuration a 2nd time, reject
 - This is after at most qngⁿ steps of simulating M
 - If M accepts, L accepts
 - If M rejects, L rejects

- (p. 223) E_{LBA} = {<M>| M an LBA where L(M) is empty}
- Theorem 5.10 E_{LBA} is undecidable
 - Assume TM R decides E_{LBA}
 - (p. 224) Construct an LBA B that recognizes all accepting computational histories for M on w
 - If M accepts w, L(B) = 1 string
 - If M does not accept w, then L(B) is empty
 - Given <M,w> B constructs all valid histories as strings separated by #s
 - Construct S to decide A_{TM} as follows
 - Construct LBA B from <M,w>
 - Run R on
 - If R rejects, S accepts
 - If R accepts, S rejects
- (p. 5.13) Theorem 5.12 Likewise ALL_{CFG} = {<G>| G is
 CFG where L(G)=Σ* is undecidable

• (p. 227) PCP: POST CORRESPONDENCE PROBLEM

- Consider a set of dominoes with 2 strings on each
- A match: list of dominoes where concatenated string on top is same as concatenated string on bottom
 - Repetitions allowed
- PCP: Given a set of dominoes, is there a match?
 - Can use duplicates
 - Try Exercise 5.3 p. 239
- PCP is undecidable (see book for proof details)
 - Reduction from A_{TM} via accepting histories
 - Given any <M,w> build a matching PCP instance
 - IF PCP is decidable, so is A_{TM}