
1

Map instance
of A into

instance of B

Decider
R for

Language B

Map results
from B

back into
results for A

Decider S for Language A
Using assumed decider for Language B

Any Instance

of Language A

Results for

A instance

If we chose A as a known undecidable language,
then if R exists as decider for B, then we have built a decider for A

- which we know is impossible

pp. 215-227. Undecidable Language Problems (Sec. 5.1)

 Remember ATM={<M,w>| M accepts w} is undecidable

 When M does not accept w cannot decide if its because it

will eventually reject or loop

 Reduction: converting one problem A into another

problem B, where we can use solver for B to solve A

 Also A clearly cannot be “harder” than B, so if B is

“decidable” then so is A.

 Standard reduction:

 Assume language L of interest is decidable by R

 Show that solving L means we can solve ATM

 By mapping any instance of ATM into L

 Thus if R exists, then we can construct a TM S so

that ATM is decidable

 But this is impossible, so no such R can exist

2

 HALTTM = {<M,w>| M is a TM that halts on w}

 (p. 216) Theorem 5.1. HALTTM is undecidable

 Proof by contradiction. Assume HALTTM is decidable by R

 Build a decider for ATM

 Given <M,w> instance from ATM, pass unchanged to R

 If R finds M halts on w, R halts and accepts

 If R finds M doesn’t halt on w, R halts and rejects

 Construct TM S to decide ATM from R as follows

 Run R on <M,w>

 If R rejects, reject (we know M loops on w)

 If R accepts (we know M halts on w):

 Simulate M on w until it halts

 If M accepts w then S accepts

 If M rejects w, then S rejects

 If R exists, then S as constructed above decides ATM

 But ATM is undecidable, so R cannot exist

Use <M,w>
as is

(No mapping needed)

Decider
R for

HALTTM

If R accepts,
Simulate M

on w

Decider S for Atm if Decider R for Language HALTTM exists

Any Instance

<M,w> of ATM

Decision for

ATM instance

If R rejects, reject <M,w>
If R accepts, Use Sim Results

3

 ETM = {<M>| M is a TM and L(M)=Φ}

 (p. 217) Theorem 5.2 ETM is undecidable

 Assume R decides ETM, i.e. given <M> as input, R

 accepts if L(M) is empty

 rejects if L(M) is not

 Use R to construct an S that decides ATM as follows

 Given any <M,w>, first convert M to M1 as follows

 On any input x, If x != w, M1 rejects

 If x = w, run M on w and accept if M does

 Only string M1 can possibly accept is w

 Now define S on an input <M,w> as follows

 Construct M1 from M

 Run R on <M1> (We are assuming R exists)

 If R accepts (i.e. L(M) = Φ), S rejects (w not in L(M))

 else if R rejects (L(M1) not empty), S accepts

 w accepted by M

 If R were decider for ETM, then S is a decider for ATM

Convert M
to
M1

Decider
R for
ETM

If R accepts,
S rejects.

If R Rejects,
S accepts

Decider S for Atm if Decider R for Language ETM exists

Any Instance

<M,w> of ATM

Decision for

ATM instance

If R accepts, L(M1) is empty
If R rejects, Use Sim Results

4

 (p. 218) REGULARTM={<M>|M a TM & L(M) is regular}

 Theorem 5.3 REGULARTM is undecidable

 Assume REGULARTM is decidable by some TM R

 Given some M, R accepts if L(M) is regular

 R rejects if L(M) is NOT regular

 Construct S from R as decider for ATM ={<M,w>} as follows

 Take M from its input <M,w> and modify M to M2 that

 recognizes non-regular language {0n1n|n≥0} if M does

not accept w

 recognizes regular language ∑* if M accepts w

 M2 constructed ONLY for purpose of feeding its

description into assumed decider R for REGULARTM

 Run R on <M2>

 If R accepts, then <M2> recognizes a regular language

 Which means M accepts w

 If R rejects, then M2 recognizes a non-reg language

 Which means that M does not accept w

 Which makes R a decider for ATM

5

 (p. 219 & Prob. 5.28) Rice’s Theorem:

 Let P be any property of the language of a TM

 LP= {<M>| M a TM such that L(M) has property P}

 LP contains some but not all TMs

 Whenever L(M1)=L(M2), <M1> ε LP iff <M2> ε LP

 Thus LP is undecidable

 Above proved undecidability from ATM

 but other undecidable languages such as ETM usable

 EQTM = {<M1, M2>| M1, M2 TMs, and L(M1)=L(M2)}

 (p. 220) Theorem 5.4 EQTM is undecidable

 Assume TM R decides EQTM

 Construct S to decide ETM (not ATM) as follows:

 On input <M> to ETM

 Run R on <M,M1> where M1 a TM that rejects all inputs

 If R accepts (i.e. M matches machine with empty

language), then S accepts (L(M) is emoty)

 If R rejects (M!=M1) then S rejects (M accepts

something)

 If R exists we now have in S a decider for ETM

 Not possible, so R cannot exist

6

 (p. 220) Reductions via Computational Histories

 Accepting Computational History of M given w

 Sequence of configurations C1, … Cl where

 C1 is start, Cl is accepting, and Ci legally follows from Ci-1

 Remember a configuration = ua qi bv, b under tape head

 Note this is finite in length

 Rejection Computational History is similar

 (p. 221) Linear Bounded Automata (LBA)

 TM with finite tape

 Cannot move off of original tape: Off left or into “blanks”

 (p. 222) Lemma 5.8. Assume M is an LBA with exactly

q states & g symbols in Γ. There are exactly qngn

possible configurations of tape of length n.

 ALBA = {<M,w>| M an LBA that accepts w}

 (p. 222) Theorem 5.9 ALBA is decidable

 Have decider L keep track of each configuration that M

enters while processing w

 If we ever enter same configuration a 2nd time, reject

 This is after at most qngn steps of simulating M

 If M accepts, L accepts

 If M rejects, L rejects

7

 (p. 223) ELBA = {<M>| M an LBA where L(M) is empty}

 Theorem 5.10 ELBA is undecidable

 Assume TM R decides ELBA

 (p. 224) Construct an LBA B that recognizes all accepting

computational histories for M on w

 If M accepts w, L(B) = 1 string

 If M does not accept w, then L(B) is empty

 Given <M,w> B constructs all valid histories as strings

separated by #s

 Construct S to decide ATM as follows

 Construct LBA B from <M,w>

 Run R on

 If R rejects, S accepts

 If R accepts, S rejects

 (p. 5.13) Theorem 5.12 Likewise ALLCFG = {<G>| G is

CFG where L(G)=Σ* is undecidable

8

 (p. 227) PCP: POST CORRESPONDENCE PROBLEM

 Consider a set of dominoes with 2 strings on each

 A match: list of dominoes where concatenated string on

top is same as concatenated string on bottom

 Repetitions allowed

 PCP: Given a set of dominoes, is there a match?

 Can use duplicates

 Try Exercise 5.3 p. 239

 PCP is undecidable (see book for proof details)

 Reduction from ATM via accepting histories

 Given any <M,w> build a matching PCP instance

 IF PCP is decidable, so is ATM

