Remember $A_{TM} = \{ <M,w> | M \text{ accepts } w \}$ is undecidable

- When M does not accept w cannot decide if its because it will eventually reject or loop

Reduction: converting one problem A into another problem B, where we can use solver for B to solve A

Also A clearly cannot be “harder” than B, so if B is “decidable” then so is A.

Standard reduction:

- **Assume language L** of interest *is decidable by R*
- Show that solving L means we can solve A_{TM}
 - By mapping any instance of A_{TM} into L
 - Thus if R exists, then we can construct a TM S so that A_{TM} is decidable
 - But this is impossible, so no such R can exist
• $\text{HALT}_{\text{TM}} = \{<M,w>| M \text{ is a TM that halts on } w\}$
• (p. 216) **Theorem 5.1.** HALT_{TM} is undecidable
 • Proof by contradiction. Assume HALT_{TM} is decidable by R
 • Build a decider for A_{TM}
 • Given $<M,w>$ instance from A_{TM}, pass unchanged to R
 • If R finds M halts on w, R halts and accepts
 • If R finds M doesn’t halt on w, R halts and rejects

$$
\begin{array}{|c|}
\hline
\text{Any Instance} & \text{Use } <M,w> \text{ as is} \\
\text{
(No mapping needed)} & \text{Decider S for } A_{\text{TM}} \text{ if Decider R for Language } \text{HALT}_{\text{TM}} \text{ exists} \\
\hline
\end{array}
\begin{array}{|c|}
\hline
\text{Decision for} & \text{If R rejects, reject } <M,w> \\
A_{\text{TM}} \text{ instance} & \text{If R accepts, Use Sim Results} \\
\hline
\end{array}
\begin{array}{|c|}
\hline
\text{If R accepts, Simulate } M \text{ on } w & \text{If R accepts, Use Sim Results} \\
\hline
\end{array}
$$

• Construct TM S to decide A_{TM} from R as follows
 • Run R on $<M,w>$
 • If R rejects, reject (we know M loops on w)
 • If R accepts (we know M halts on w):
 • Simulate M on w until it halts
 • If M accepts w then S accepts
 • If M rejects w, then S rejects
 • If R exists, then S as constructed above decides A_{TM}

• **But A_{TM} is undecidable, so R cannot exist**
• $E_{TM} = \{<M> | M \text{ is a TM and } L(M) = \emptyset\}$

• (p. 217) Theorem 5.2 E_{TM} is undecidable
 • Assume R decides E_{TM}, i.e. given $<M>$ as input, R
 • accepts if $L(M)$ is empty
 • rejects if $L(M)$ is not

 • Use R to construct an S that decides A_{TM} as follows
 • Given any $<M,w>$, first convert M to M_1 as follows
 • On any input x, If $x \neq w$, M_1 rejects
 • If $x = w$, run M on w and accept if M does
 • Only string M_1 can possibly accept is w
 • Now define S on an input $<M,w>$ as follows
 • Construct M_1 from M
 • Run R on $<M_1>$ (We are assuming R exists)
 • If R accepts (i.e. $L(M) = \emptyset$), S rejects (w not in $L(M)$)
 • else if R rejects ($L(M_1)$ not empty), S accepts
 • w accepted by M
 • If R were decider for E_{TM}, then S is a decider for A_{TM}
• (p. 218) \(\text{REGULAR}_{\text{TM}} = \{<M> | M \text{ a TM} \& L(M) \text{ is regular}\}

• **Theorem 5.3 REGULAR_{\text{TM}} is undecidable**
 • Assume REGULAR_{\text{TM}} is decidable by some TM R
 • Given some M, R accepts if \(L(M)\) is regular
 • R rejects if \(L(M)\) is NOT regular
 • Construct S from R as decider for \(A_{\text{TM}} = \{<M,w>\}\) as follows
 • Take M from its input \(<M,w>\) and modify M to \(M_2\) that
 • recognizes non-regular language \(\{0^n1^n | n \geq 0\}\) if M does not accept w
 • recognizes regular language \(\Sigma^*\) if M accepts w
 • \(M_2\) constructed ONLY for purpose of feeding its description into assumed decider R for REGULAR_{\text{TM}}
 • Run R on \(<M_2>\)
 • If R accepts, then \(<M_2>\) recognizes a regular language
 • Which means M accepts w
 • If R rejects, then \(M_2\) recognizes a non-reg language
 • Which means that M does not accept w
 • Which makes R a decider for \(A_{\text{TM}}\)
• (p. 219 & Prob. 5.28) **Rice’s Theorem:**
 • Let P be any property of the language of a TM
 • \(L_P = \{ <M> | M \text{ a TM such that } L(M) \text{ has property } P \} \)
 • \(L_P \) contains some but not all TMs
 • Whenever \(L(M_1) = L(M_2) \), \(<M_1> \in L_P \) iff \(<M_2> \in L_P \)
 • Thus \(L_P \) is undecidable
• Above proved undecidability from \(A_{TM} \)
 • but other undecidable languages such as \(E_{TM} \) usable

• \(EQ_{TM} = \{ <M_1, M_2> | M_1, M_2 \text{ TMs, and } L(M_1) = L(M_2) \} \)
• (p. 220) **Theorem 5.4** \(EQ_{TM} \) is undecidable
 • Assume TM R decides \(EQ_{TM} \)
 • Construct S to decide \(E_{TM} \) (not \(A_{TM} \)) as follows:
 • On input \(<M> \) to \(E_{TM} \)
 • Run R on \(<M, M_1> \) where \(M_1 \) a TM that rejects all inputs
 • If R accepts (i.e. \(M \) matches machine with empty language), then S accepts (\(L(M) \) is empty)
 • If R rejects (\(M_1 \neq M_1 \)) then S rejects (\(M \) accepts something)
 • If R exists we now have in S a decider for \(E_{TM} \)
 • Not possible, so R cannot exist
• (p. 220) Reductions via Computational Histories

Accepting Computational History of M given w
- Sequence of configurations C₁, ... C₁ where
 - C₁ is start, C₁ is accepting, and Cᵢ legally follows from Cᵢ₋₁
 - Remember a configuration = uₐ qᵢ bᵥ, b under tape head
 - Note this is finite in length

Rejection Computational History is similar

• (p. 221) **Linear Bounded Automata (LBA)**
 - TM with finite tape
 - Cannot move off of original tape: Off left or into “blanks”

• (p. 222) **Lemma 5.8. Assume** M is an LBA with exactly q states & g symbols in Γ. There are exactly qngⁿ possible configurations of tape of length n.

• A_{LBA} = {<M,w>| M an LBA that accepts w}

• (p. 222) **Theorem 5.9** A_{LBA} is decidable
 - Have decider L keep track of each configuration that M enters while processing w
 - If we ever enter same configuration a 2ⁿᵈ time, reject
 - This is after at most qngⁿ steps of simulating M
 - If M accepts, L accepts
 - If M rejects, L rejects
• (p. 223) $E_{LBA} = \{<M> | M \text{ an LBA where } L(M) \text{ is empty}\}$

• **Theorem 5.10 E_{LBA} is undecidable**

 • Assume TM R decides E_{LBA}

 • (p. 224) Construct an LBA B that recognizes all accepting computational histories for M on w

 • If M accepts w, $L(B) = 1$ string

 • If M does not accept w, then $L(B)$ is empty

 • Given $<M,w>$ B constructs all valid histories as strings separated by #s

 • Construct S to decide A_{TM} as follows

 • Construct LBA B from $<M,w>$

 • Run R on $$

 • If R rejects, S accepts

 • If R accepts, S rejects

 • (p. 5.13) **Theorem 5.12** Likewise $\text{ALL}_{CFG} = \{<G> | G \text{ is CFG where } L(G) = \Sigma^* \text{ is undecidable}\}$
(p. 227) PCP: POST CORRESPONDENCE PROBLEM

- Consider a set of dominoes with 2 strings on each
- A **match**: list of dominoes where concatenated string on top is same as concatenated string on bottom
 - Repetitions allowed
- PCP: Given a set of dominoes, is there a match?
 - Can use duplicates
 - Try Exercise 5.3 p. 239
- PCP is undecidable (see book for proof details)
 - Reduction from A_{TM} via accepting histories
 - Given any $<M,w>$ build a matching PCP instance
 - IF PCP is decidable, so is A_{TM}