Remember $A_{TM}=\{<M,w>| M \text{ accepts } w\}$ is undecidable

- When M does not accept w cannot decide if its because it will eventually reject or loop

Reduction: converting one problem A into another problem B, where we can use solver for B to solve A

- Also A clearly cannot be “harder” than B, so if B is “decidable” then so is A.

Standard reduction:

- **Assume language L** of interest is decidable by R
- Show that solving L means we can solve A_{TM}
 - By mapping any instance of A_{TM} into L
 - Thus if R exists, then we can construct a TM S so that A_{TM} is decidable
 - But this is impossible, so no such R can exist

pp. 215-227. *Undecidable Language Problems* (Sec. 5.1)
• \(\text{HALT}_{\text{TM}} = \{<M,w>| \ M \text{ is a TM that halts on } w\} \)

• (p. 216) **Theorem 5.1.** \(\text{HALT}_{\text{TM}} \) **is undecidable**
 • Proof by contradiction. Assume \(\text{HALT}_{\text{TM}} \) is decidable by \(R \)
 • Build a decider for \(A_{\text{TM}} \)
 • Given \(<M,w> \) instance from \(A_{\text{TM}} \), pass unchanged to \(R \)
 • If \(R \) finds \(M \) halts on \(w \), \(R \) halts and accepts
 • If \(R \) finds \(M \) doesn’t halt on \(w \), \(R \) halts and rejects

 ![Diagram](image.png)

 • Construct TM \(S \) to decide \(A_{\text{TM}} \) from \(R \) as follows
 • Run \(R \) on \(<M,w> \)
 • If \(R \) rejects, reject (we know \(M \) loops on \(w \))
 • If \(R \) accepts (we know \(M \) halts on \(w \)):
 • Simulate \(M \) on \(w \) until it halts
 • If \(M \) accepts \(w \) then \(S \) accepts
 • If \(M \) rejects \(w \), then \(S \) rejects
 • If \(R \) exists, then \(S \) as constructed above decides \(A_{\text{TM}} \)

 • **But \(A_{\text{TM}} \) is undecidable, so \(R \) cannot exist**
• **$E_{TM} = \{<M> | M \text{ is a TM and } L(M) = \emptyset\}$**

• (p. 217) **Theorem 5.2 E_{TM} is undecidable**

 • Assume R decides E_{TM}, i.e. given $<M>$ as input, R
 • accepts if $L(M)$ is empty
 • rejects if $L(M)$ is not

• Use R to construct a S that decides A_{TM} as follows

 • Given any $<M,w>$, first convert M to M_1 as follows
 • On any input x, if $x \neq w$, M_1 rejects
 • If $x = w$, run M on w and accept if M does
 • Only string M_1 can possibly accept is w

 • Now define S on an input $<M,w>$ as follows
 • Construct M_1 from M
 • Run R on $<M_1>$ (We are assuming R exists)
 • If R accepts (i.e. $L(M) = \emptyset$), S rejects (w not in $L(M)$)
 • else if R rejects ($L(M_1)$ not empty), S accepts
 • w accepted by M
 • If R were decider for E_{TM}, then S is a decider for A_{TM}
• (p. 218) \(\text{REGULAR}^\text{TM} = \{ <M> | M \text{ a TM & } L(M) \text{ is regular} \} \)

• **Theorem 5.3 REGULAR\(^\text{TM}\) is undecidable**

 • Assume REGULAR\(^\text{TM}\) is decidable by some TM R

 • Given some M, R accepts if \(L(M) \) is regular

 • R rejects if \(L(M) \) is NOT regular

 • Construct S from R as decider for \(A^\text{TM} = \{ <M,w> \} \) as follows

 • Take M from its input <\(M,w > \> and modify M to \(M_2 \) that

 • recognizes non-regular language \(\{ 0^n1^n | n \geq 0 \} \) if M does not accept \(w \)

 • recognizes regular language \(\Sigma^* \) if M accepts \(w \)

 • \(M_2 \) constructed ONLY for purpose of feeding its description into assumed decider R for REGULAR\(^\text{TM}\)

 • Run R on \(<M_2> \)

 • If R accepts, then \(<M_2> \) recognizes a regular language

 • Which means M accepts \(w \)

 • If R rejects, then \(M_2 \) recognizes a non-reg language

 • Which means that M does not accept \(w \)

 • Which makes R a decider for \(A^\text{TM} \)
(p. 219 & Prob. 5.28) Rice’s Theorem:

Let P be any property of the language of a TM

\[L_P = \{ <M> | M \text{ a TM such that } L(M) \text{ has property } P \} \]

- \(L_P \) contains some but not all TMs
- Whenever \(L(M_1) = L(M_2) \), \(<M_1> \in L_P \) iff \(<M_2> \in L_P \)

- Thus \(L_P \) is undecidable

Above proved undecidability from \(A_{TM} \)

- but other undecidable languages such as \(E_{TM} \) usable

\[EQ_{TM} = \{ <M_1, M_2> | M_1, M_2 \text{ TMs, and } L(M_1) = L(M_2) \} \]

(p. 220) Theorem 5.4 \(EQ_{TM} \) is undecidable

- Assume TM R decides \(EQ_{TM} \)
- Construct S to decide \(E_{TM} \) (not \(A_{TM} \)) as follows:
 - On input \(<M> \) to \(E_{TM} \)
 - Run R on \(<M,M_1> \) where \(M_1 \) a TM that rejects all inputs
 - If R accepts (i.e. \(M \) matches machine with empty language), then S accepts (\(L(M) \) is empty)
 - If R rejects (\(M\neq M_1 \)) then S rejects (\(M \) accepts something)
- If R exists we now have in S a decider for \(E_{TM} \)
- Not possible, so R cannot exist
• (p. 220) Reductions via Computational Histories

• **Accepting Computational History** of M given w
 - Sequence of configurations C_1, \ldots, C_l where
 - C_1 is start, C_l is accepting, and C_i legally follows from C_{i-1}
 - Remember a configuration $= ua q_i bv$, b under tape head
 - Note this is finite in length

• **Rejection Computational History** is similar

• (p. 221) **Linear Bounded Automata (LBA)**
 - TM with finite tape
 - Cannot move off of original tape: Off left or into “blanks”

• (p. 222) **Lemma 5.8. Assume** M is an LBA with exactly q states & g symbols in Γ. There are exactly $q^n g^n$ possible configurations of tape of length n.

• $A_{\text{LBA}} = \{<M, w> | \, M \text{ an LBA that accepts } w\}$

• (p. 222) **Theorem 5.9** A_{LBA} is decidable
 - Have decider L keep track of each configuration that M enters while processing w
 - If we ever enter same configuration a 2nd time, reject
 - This is after at most $q^n g^n$ steps of simulating M
 - If M accepts, L accepts
 - If M rejects, L rejects
• (p. 223) \(E_{LBA} = \{<M>| M \text{ an LBA where } L(M) \text{ is empty}\} \)

• **Theorem 5.10** \(E_{LBA} \) is undecidable
 • Assume TM \(R \) decides \(E_{LBA} \)
 • (p. 224) Construct an LBA \(B \) that recognizes all accepting computational histories for \(M \) on \(w \)
 • If \(M \) accepts \(w \), \(L(B) = 1 \) string
 • If \(M \) does not accept \(w \), then \(L(B) \) is empty
 • Given \(<M,w> \) \(B \) constructs all valid histories as strings separated by \#s
 • Construct \(S \) to decide \(A_{TM} \) as follows
 • Construct LBA \(B \) from \(<M,w> \)
 • Run \(R \) on \(\)
 • If \(R \) rejects, \(S \) accepts
 • If \(R \) accepts, \(S \) rejects

• (p. 5.13) **Theorem 5.12** Likewise \(\text{ALL}_{CFG} = \{<G>| G \text{ is CFG where } L(G) = \Sigma^* \} \) is undecidable
PCP: POST CORRESPONDENCE PROBLEM

- Consider a set of dominoes with 2 strings on each
- A match: list of dominoes where concatenated string on top is same as concatenated string on bottom
 - Repetitions allowed
- PCP: Given a set of dominoes, is there a match?
 - Can use duplicates
 - Try Exercise 5.3 p. 239
- PCP is undecidable (see book for proof details)
 - Reduction from A_{TM} via accepting histories
 - Given any $<M,w>$ build a matching PCP instance
 - IF PCP is decidable, so is A_{TM}