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If we chose A as a known undecidable language, 
then if R exists as decider for B, then we have built a decider for A

- which we know is impossible

pp. 215-227. Undecidable Language Problems (Sec. 5.1) 

 Remember ATM={<M,w>| M accepts w} is undecidable 

 When M does not accept w cannot decide if its because it 

will eventually reject or loop 

 Reduction: converting one problem A into another 

problem B, where we can use solver for B to solve A 

 

 

 

 

 Also A clearly cannot be “harder” than B, so if B is 

“decidable” then so is A. 

 Standard reduction:  

 Assume language L of interest is decidable by R 

 Show that solving L means we can solve ATM 

 By mapping any instance of ATM into L 

 Thus if R exists, then we can construct a TM S so 

that ATM is decidable 

 But this is impossible, so no such R can exist 
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 HALTTM =  {<M,w>| M is a TM that halts on w} 

 (p. 216) Theorem 5.1. HALTTM is undecidable  

 Proof by contradiction. Assume HALTTM is decidable by R 

 Build a decider for ATM  

 Given  <M,w> instance from ATM, pass unchanged to R 

 If R finds M halts on w, R halts and accepts 

 If R finds M doesn’t halt on w, R halts and rejects 

 

 Construct TM S to decide ATM from R as follows 

 Run R on <M,w> 

 If R rejects, reject (we know M loops on w) 

 If R accepts (we know M halts on w): 

 Simulate M on w until it halts 

 If M accepts w then S accepts 

 If M rejects w, then S rejects 

 If R exists, then S as constructed above decides ATM  

 But ATM is undecidable, so R cannot exist 

Use <M,w>
as is 

(No mapping needed)

Decider 
R for

HALTTM

If R accepts,
Simulate M

on w

Decider S for Atm if Decider R for Language HALTTM exists

Any Instance

<M,w> of ATM

Decision for

ATM instance

If R rejects, reject <M,w>
If R accepts, Use Sim Results
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 ETM =  {<M>| M is a TM and L(M)=Φ} 

  (p. 217) Theorem 5.2 ETM is undecidable  

 Assume R decides ETM, i.e. given <M> as input, R  

 accepts if L(M) is empty 

 rejects if L(M) is not 

 

 Use R to construct an S that decides ATM as follows 

 Given any <M,w>, first convert M to M1 as follows 

 On any input x, If x != w, M1 rejects 

 If x = w, run M on w and accept if M does 

 Only string M1 can possibly accept is w 

 Now define S on an input <M,w> as follows 

 Construct M1 from M 

 Run R on <M1> (We are assuming R exists) 

 If R accepts (i.e. L(M) = Φ), S rejects (w not in L(M)) 

 else if R rejects (L(M1) not empty), S accepts 

 w accepted by M 

 If R were decider for ETM, then S is a decider for ATM 

Convert M
to
M1

Decider 
R for
ETM

If R accepts, 
S rejects.

If R Rejects,
S accepts

Decider S for Atm if Decider R for Language ETM exists

Any Instance

<M,w> of ATM

Decision for

ATM instance

If R accepts, L(M1) is empty
If R rejects, Use Sim Results
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  (p. 218) REGULARTM={<M>|M a TM & L(M) is regular}  

 Theorem 5.3 REGULARTM is undecidable 

 Assume REGULARTM is decidable by some TM R 

 Given some M, R accepts if L(M) is regular 

 R rejects if L(M) is NOT regular 

 Construct S from R as decider for ATM ={<M,w>} as follows 

 Take M from its input <M,w> and modify M to M2 that  

 recognizes non-regular language {0n1n|n≥0} if M does 

not accept w 

 recognizes regular language ∑* if M accepts w 

 M2 constructed ONLY for purpose of feeding its 

description into assumed decider R for REGULARTM  

 Run R on <M2> 

 If R accepts, then <M2> recognizes a regular language 

 Which means M accepts w 

 If R rejects, then M2 recognizes a non-reg language 

 Which means that M does not accept w 

 Which makes R a decider for ATM  
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 (p. 219 & Prob. 5.28) Rice’s Theorem:  

 Let P be any property of the language of a TM  

 LP= {<M>| M a TM such that L(M) has property P}  

 LP contains some but not all TMs 

 Whenever L(M1)=L(M2), <M1> ε LP  iff <M2> ε LP 

 Thus LP is undecidable 

 Above proved undecidability from ATM 

 but other undecidable languages such as ETM usable 

 

 EQTM = {<M1, M2>| M1, M2 TMs, and L(M1)=L(M2)} 

 (p. 220) Theorem 5.4 EQTM is undecidable  

 Assume TM R decides EQTM 

 Construct S to decide ETM (not ATM ) as follows: 

 On input <M> to ETM  

 Run R on <M,M1> where M1 a TM that rejects all inputs 

 If R accepts (i.e. M matches machine with empty 

language), then S accepts (L(M) is emoty) 

 If R rejects (M!=M1) then S rejects (M accepts 

something) 

 If R exists we now have in S a decider for ETM  

 Not possible, so R cannot exist 
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 (p. 220) Reductions via Computational Histories 

 Accepting Computational History of M given w 

 Sequence of configurations C1, … Cl where 

 C1 is start, Cl is accepting, and Ci legally follows from Ci-1 

 Remember a configuration = ua qi bv, b under tape head 

 Note this is finite in length 

 Rejection Computational History is similar 

 (p. 221) Linear Bounded Automata (LBA) 

 TM with finite tape 

 Cannot move off of original tape: Off left or into “blanks” 

 (p. 222) Lemma 5.8. Assume M is an LBA with exactly 

q  states & g symbols in Γ. There are exactly qngn 

possible configurations of tape of length n. 

 ALBA = {<M,w>| M an LBA that accepts w} 

 (p. 222) Theorem 5.9 ALBA is decidable 

 Have decider L keep track of each configuration that M 

enters while processing w 

 If we ever enter same configuration a 2nd time, reject 

 This is after at most qngn steps of simulating M 

 If M accepts, L accepts 

 If M rejects, L rejects 
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 (p. 223) ELBA = {<M>| M an LBA where L(M) is empty} 

 Theorem 5.10 ELBA is undecidable 

 Assume TM R decides ELBA 

 (p. 224) Construct an LBA B that recognizes all accepting 

computational histories for M on w 

 If M accepts w, L(B) = 1 string 

 If M does not accept w, then L(B) is empty 

 Given <M,w> B constructs all valid histories as strings 

separated by #s 

  Construct S to decide ATM as follows 

 Construct LBA B from <M,w> 

 Run R on <B> 

 If R rejects, S accepts 

 If R accepts, S rejects 

 (p. 5.13) Theorem 5.12 Likewise ALLCFG = {<G>| G is 

CFG where L(G)=Σ* is undecidable 
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 (p. 227) PCP: POST CORRESPONDENCE PROBLEM 

 Consider a set of dominoes with 2 strings on each 

 A match: list of dominoes where concatenated string on 

top is same as concatenated string on bottom 

 Repetitions allowed 

 PCP: Given a set of dominoes, is there a match? 

 Can use duplicates 

 Try Exercise 5.3 p. 239 

 PCP is undecidable (see book for proof details) 

 Reduction from ATM via accepting histories 

 Given any <M,w> build a matching PCP instance 

 IF PCP is decidable, so is ATM 

 


