Boolean Satisfiability: The Central Problem of Computation

Peter Kogge

(p. 299) SAT: Boolean Satisfiability
\square wff: well-formed-formula constructed from

- A set V of Boolean variables
- Boolean operations AND, OR, NOT
\square Satisfiability: is there a substitution of 0 s and 1s to variables that makes the wff true
- i.e. makes all clauses simultaneously true
\square Unsatisfiability: no substitution makes all clauses true at same time
\square See references in "Links" class page

CNF: Clausal Normal Form

\square wff restructured as AND of a set of clauses

- Each clause an OR of a set of literals
- Each literal a variable or its negation
\square For a wff in clausal form to be true
- All clauses must be true
- For any clause to be true at least one literal must be true
\square Example: ($\sim x \operatorname{v}) \&(x \vee y) \&(x \vee \sim y)$
$-x=1, y=1$ makes expression true
$\square(\sim x \vee y) \&(x \vee y) \&(x \vee \sim y) \&(\sim x \vee \sim y)$
- No assignment of values make this true

Why Does SAT Matter

\square Huge range of direct applications
\square Will show that $\underline{A L L}$ computable functions can be converted into a SAT problem
\square If we can solve SAT quickly, we can solve any computable problem quickly
\square But no one has been able to find such a solution!

Applications

Following list taken from http://logos.ucd.ie/~jpms/talks/talksite/jpmswodes08.pdf

- Circuit construction and simulation
\square Model checking: H/W, S/W, test patterns
] AI: Planning; Knowledge representation; Games
\square Bioinformatics: Haplotype inference; Pedigree checking; Maximum quartet consistency; etc.
- Design automation:
\square Equivalence checking; Delay computation; Fault diagnosis; Noise analysis; etc.
] Security: Cryptanalysis; Inversion attacks on hash functions; etc.
- Computationally hard problems: Graph coloring; Traveling salesperson; etc.
. Mathematical problems: van der Waerden numbers; etc
- Core engine for many other problem domains

SAT Problem Sizes

\square Hundreds of thousands to millions of variables
\square Huge numbers of clauses
\square Often very large numbers of literals per clause
\square Sample problem sources:

- http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
\square There is even a yearly competition that has been going on for decades
- Current 2017: https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=certificates
- 2016: https://baldur.iti.kit.edu/sat-competition2016/index.php?cat=certificates

Example: Sudoku to SAT

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Fill in all blanks so $1 . . .9$ appear on every row, column, and 3×3 grid

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

\square Define 729 variables $\mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{d}}(1 \leq \mathrm{i}, \mathrm{j}, \mathrm{d} \leq 9)$ such that

- $x_{i, j, d}=1$ if cell (i, j) has digit $\mathrm{d}, 0$ otherwise
$\square 81$ clauses: 1 for each cell (i, j) to ensure it has a digit:
$-\left(\mathrm{x}_{\mathrm{i}, \mathrm{j}, 1} \vee \mathrm{x}_{\mathrm{i}, \mathrm{j}, 2} \mathrm{~V} \ldots \mathrm{x}_{\mathrm{i}, \mathrm{j}, 9}\right)$
$\square 81$ sets of 36 clauses to ensure no cell has 2 digits:
- For each of $1 \leq d<d^{\prime} \leq 9:\left(\sim x_{i, j, d} V \sim x_{i, j, d^{\prime}}\right)$
\square To state that row i, for example, has all 9 digits:
- AND of 9 clauses (1 for each value of d) where d'th clause is ($x_{i, 1, \mathrm{~d}} V \ldots V x_{i, 9, d}$)
- And 9 sets of $36=324$ clauses to ensure uniqueness ($\left.\sim x_{i, j, d} \vee \sim x_{i, j, d}\right)$
- Repeat construction for all rows, columns, grids
- Total of 11,745 clauses (most with 2 literals/clause, rest have 9)
$\square \quad$ Initialize cells by setting certain variables, e.g. $x_{1,1,5}=1$ and $x_{1,1, d}=0$ for $d \neq 5$
SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017

A 2x2 Sudoku

1	2
2	1

$\square 8$ variables: $x_{1,1,1}, x_{1,1,2}, x_{1,2,1}, x_{1,2,2}, x_{2,1,1}, x_{2,1,2}, x_{2,2,1}, x_{2,2,2}$

- 4 clauses to ensure a digit/cell:

$$
-\left(x_{1,1,1} \vee x_{1,1,2}\right) \&\left(x_{1,2,1} \vee x_{1,2,2}\right) \&\left(x_{2,1,1} \vee x_{2,1,2}\right) \&\left(x_{2,2,1} \vee x_{2,2,2}\right)
$$

[4 sets of 1 clause to ensure no duplicates:

$$
-\left(\sim x_{1,1,1} V \sim x_{1,1,2}\right) \&\left(\sim x_{1,2,1} V \sim x_{1,2,2}\right) \&\left(\sim x_{2,1,1} V \sim x_{2,1,2}\right) \&\left(\sim x_{2,2,1} V \sim x_{2,2,2}\right)
$$

- 4 clauses for row 1:

$$
-\left(x_{1,1,1} \vee x_{1,2,1}\right) \&\left(x_{1,1,2} \vee x_{1,2,2}\right) \&\left(\sim x_{1,1,1} \vee \sim x_{1,2,1}\right) \&\left(\sim x_{1,1,2} \vee \sim x_{1,2,2}\right)
$$

- 4 clauses for row 2:

$$
-\left(x_{2,1,1} \vee x_{2,2,1}\right) \&\left(x_{2,1,2} \vee x_{2,2,2}\right) \&\left(\sim x_{2,1,1} \vee \sim x_{2,2,1}\right) \&\left(\sim x_{2,1,2} \vee \sim x_{2,2,2}\right)
$$

[4 clauses for column 1:
$-\left(x_{1,1,1} \vee x_{2,1,1}\right) \&\left(x_{1,1,2} \vee x_{2,1,2}\right) \&\left(\sim x_{1,1,1} v \sim x_{2,1,1}\right) \&\left(\sim x_{1,1,2} v \sim x_{2,1,2}\right)$

- 4 clauses 4 column 2:
$-\left(\mathbf{x}_{1,2,1} \vee \mathrm{x}_{2,2,1}\right) \&\left(\mathrm{x}_{1,2,2} \vee \mathrm{x}_{2,2,2}\right) \&\left(\sim \mathrm{x}_{1,2,1} \mathbf{V} \sim \mathrm{x}_{2,2,1}\right) \&\left(\sim \mathrm{x}_{1,2,2} \mathrm{~V} \sim \mathrm{x}_{2,2,2}\right)$
[2 Initialization clauses: $x_{1,1,1} \& \sim x_{1,1,2}$

Variants of SAT in CNF

\square 1-SAT: all clauses have exactly 1 literal

- Each clause is one literal
- If any 2 clauses are a variable \& its complement, then reject
- E.g. $x_{1} \& x_{2} \& \sim x_{3}$ satisfied by $x_{1}=1, x_{2}=1, x_{3}=0$
- But add on clause $\sim x_{1}$ and unsatisfiable
\square 2-SAT: all clauses have at most 2 literals
- Clause: ($\mathrm{L}_{\mathrm{i} 1} \mathrm{~V} \mathrm{~L}_{\mathrm{i} 2}$)
\square 3-SAT: all clauses have at most 3 literals
- Clause: ($\mathrm{L}_{\mathrm{i} 1} \mathrm{~V}_{\mathrm{i} 2} \mathrm{~V}_{\mathrm{i} 3}$)
- At least one literal in each clause must be true

The Simplest SAT Solver

\square Generate all 2^{V} assignments to V variables
\square For each assignment, check each clause
\square Satisfiable: Some assignment makes all clauses true
\square Unsatisfiable: no assignment works

X	y	z	$x \vee \sim y$	y V z	$\sim \mathrm{xV} \sim \mathrm{z}$	$\sim x \mathrm{~V} \sim \mathrm{y}$ Vz	$x \vee y V \sim z$	AK Clauses	All but last
0	0	0	1	0	1	1	1	$1{ }^{1-5}$	0
0	0	1	[-1	$\overline{1}$	$1-$	1^{--4}	$0{ }^{-}$	$1-0^{-}-\frac{1}{1}$	\rightarrow -
0	1	0	0	1	1	1	1	10	0
0	1	1	0	1	1	1	1	10	0
1	0	0	1	0	1	1	1	10	0
1	0	1	1	1	0	1	1	101	0
1	1	0	1	1	1	0	1	10	0
1	1	1	1	1	0	1	1	10	0

Brute Force Approach

Brute Force Algorithm

for each combination of variable values

- V = \# variables
- C = \# Clauses
- K = \# Literals per Clause

A Python Implementation

Dividing by CK=\# Literals

Backtracking: Core to Real Solvers

- Consider "incremental" approach that generates assignment dynamically
\square Keep track of state of clauses under current partial assignment; clauses may be
- True: some literal in clause has a variable value that makes it true
- False: all literals in clause have variable values that make literals false
- Undetermined: one or more literals have variables without any current assigned value
K Keep "stack" of order of assignments to allow backtrack if current assignment doesn't work

Basic Backtracking

\square Select some variable from a indeterminate clause
\square Select value to give to that variable (to make some clause true)

- Save (on stack) variable and value as a "CHOICE POINT"
\square Ignore all clauses now true
If no clause remains, declare "Satisfied"
- Values on stack are satisfying assignment
[If some clause is now "false":
- Go to top choice point, reverse value and try again
- If top variable has tried both values, pop choice point, and repeat on choice point below below
- If stack is now empty, declare "Unsatisfiable"
\square If no clauses false and some still undetermined, repeat above on a different variable that has no value

Equivalent to a "Tree Traversal"

Red: Backtrack to last Choice Point and try another

Another Example

 $(x V \sim y) \&(y V z) \&(\sim x V \sim z) \&(\sim x V \sim y V z) \&(x V y V \sim z)$
The Unit Clause Rule

\square Additional trick: When a clause has only one undetermined literal

- Add a choice point entry with that variable
- Assign value to variable to make literal true
- With flag that reversing value need not be tried

Many other heuristics have been developed
\square Average complexity greatly reduced
\square But for $\mathrm{kSAT}, \mathrm{k}>2$, worst case still $\mathbf{O}\left(\mathbf{2}^{\mathrm{V}}\right)$

Special Case: 2SAT

\square Speedup observation:

- Assume we guess $x_{i}=1$ (build a choice point)
- All clauses with x_{i} as a literal are now true
\square Now look at all clauses of form ($\sim X_{i} \vee L_{j}$)
$-\sim x_{i}$ is false from assignment
- so L_{i} must be true => new assignment
- Can repeat as long as we generate new assignments
\square Backtrack when we get conflicting assignments to same variable
\square Variations are polynomial even in worst case
- Possible to get linear time

Alternative 2SAT Graph Algorithm

\square If V variables, generate 2 V vertices

- pairs labelled x_{i} and $\sim x_{i}$
\square For each clause ($L_{i} V L_{k}$) using variables x_{i} and x_{k}, generate 2 edges in the graph
$-\sim L_{i}$ to L_{k}
$-\sim L_{k}$ to L_{i}
\square Unsatisfiable if for any \mathbf{x}_{i} there is a path
- from x_{i} to $\sim \mathrm{x}_{\mathrm{i}}$
- and $\sim x_{i}$ to x_{i}
\square Satisfiable if no such path

2SAT as Domino Chains

Example:

$$
(\sim x \vee y) \&(x \vee y) \&(x \vee \sim y)
$$

What happens when we add clause ($\sim x \vee \sim y$)?

Your Turn: Bipartite Matching

\square What are variables?
\square How to guarantee at least one match per vertex?

- How to guarantee only 1 match per
 vertx?

