Boolean Satisfiability: The Central Problem of Computation

Peter Kogge

Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 1

(p. 299) SAT: Boolean Satisfiability

wff: well-formed-formula constructed from

- A set V of Boolean variables
- Boolean operations AND, OR, NOT
- Satisfiability: is there a substitution of 0s and 1s to variables that makes the wff true
 - i.e. makes all clauses simultaneously true
- Unsatisfiability: no substitution makes all clauses true at same time
- □ See references in "Links" class page

CNF: Clausal Normal Form

- □ wff restructured as AND of a set of clauses
 - Each clause an OR of a set of literals
 - Each literal a variable or its negation
- □ For a wff in clausal form to be true
 - All clauses must be true
 - For any clause to be true at least one literal must be true
- □ Example: (~x v y) & (x v y) & (x v ~y)
 - x=1, y=1 makes expression true
- □ (~x v y) & (x v y) & (x v ~y) & (~x v ~y)
 - No assignment of values make this true

Why Does SAT Matter

- Huge range of direct applications
- Will show that <u>ALL</u> computable functions can be converted into a SAT problem
- □ If we can solve SAT quickly, we can solve <u>any</u> computable problem quickly
- But <u>no one</u> has been able to find such a solution!

Applications

Following list taken from http://logos.ucd.ie/~jpms/talks/talksite/jpmswodes08.pdf

- □ Circuit construction and simulation
- □ Model checking: H/W, S/W, test patterns
- □ AI: Planning; Knowledge representation; Games
- Bioinformatics: Haplotype inference; Pedigree checking; Maximum quartet consistency; etc.
- **Design** automation:
- Equivalence checking; Delay computation; Fault diagnosis; Noise analysis; etc.
- □ Security: Cryptanalysis; Inversion attacks on hash functions; etc.
- Computationally hard problems: Graph coloring; Traveling salesperson; etc.
- □ Mathematical problems: van der Waerden numbers; etc
- **Core engine for many other problem domains**

SAT Problem Sizes

- Hundreds of thousands to millions of variables
- □ Huge numbers of clauses
- □ Often very large numbers of literals per clause
- □ Sample problem sources:
 - http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
- There is even a yearly competition that has been going on for decades
 - Current 2017: https://baldur.iti.kit.edu/satcompetition-2017/index.php?cat=certificates
 - 2016: https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=certificates

Example: Sudoku to SAT

Fill in all blanks so 1...9 appear on every row, column, and 3x3 grid

5	3	4	6	7	8	9	1	2
6	$\overline{7}$	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	$\overline{7}$	6	1	4	2	3
4	2	6	8	5	3	$\overline{7}$	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

- □ Define 729 variables $x_{i,j,d}$ (1≤i,j,d≤9) such that
 - $x_{i,j,d} = 1$ if cell (i,j) has digit d, 0 otherwise
- □ 81 clauses: 1 for each cell (i,j) to ensure it has a digit:
 - $(\mathbf{x}_{i,j,1} \ V \ \mathbf{x}_{i,j,2} \ V \ \dots \ \mathbf{x}_{i,j,9})$
- □ 81 sets of 36 clauses to ensure no cell has 2 digits:
 - − For each of 1≤d<d'≤9: ($\sim x_{i,j,d}$ V $\sim x_{i,j,d'}$)
- □ To state that row i, for example, has all 9 digits:
 - AND of 9 clauses (1 for each value of d) where d'th clause is $(x_{i,1,d} V \dots V x_{i,9,d})$
 - And 9 sets of 36 = 324 clauses to ensure uniqueness ($\sim x_{i,j,d} \vee \sim x_{i,j',d}$)
- □ Repeat construction for all rows, columns, grids
- □ Total of 11,745 clauses (most with 2 literals/clause, rest have 9)
- Initialize cells by setting certain variables, e.g. x_{1,1,5}=1 and x_{1,1,d} = 0 for d≠5
 SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 7

A 2x2 Sudoku

8 variables: $x_{1,1,1}$, $x_{1,1,2}$, $x_{1,2,1}$, $x_{1,2,2}$, $x_{2,1,1}$, $x_{2,1,2}$, $x_{2,2,1}$, $x_{2,2,2}$
4 clauses to ensure a digit/cell:
$- (x_{1,1,1} V x_{1,1,2}) \& (x_{1,2,1} V x_{1,2,2}) \& (x_{2,1,1} V x_{2,1,2}) \& (x_{2,2,1} V x_{2,2,2})$
4 sets of 1 clause to ensure no duplicates:
$- (~x_{1,1,1} \vee ~x_{1,1,2}) \& (~x_{1,2,1} \vee ~x_{1,2,2}) \& (~x_{2,1,1} \vee ~x_{2,1,2}) \& (~x_{2,2,1} \vee ~x_{2,2,2})$
4 clauses for row 1:
$- (x_{1,1,1} \vee x_{1,2,1}) \& (x_{1,1,2} \vee x_{1,2,2}) \& (\sim x_{1,1,1} \vee \sim x_{1,2,1}) \& (\sim x_{1,1,2} \vee \sim x_{1,2,2})$
4 clauses for row 2:
$- (x_{2,1,1} \vee x_{2,2,1}) \& (x_{2,1,2} \vee x_{2,2,2}) \& (\sim x_{2,1,1} \vee \sim x_{2,2,1}) \& (\sim x_{2,1,2} \vee \sim x_{2,2,2})$
4 clauses for column 1:
$- (x_{1,1,1} V x_{2,1,1}) \& (x_{1,1,2} V x_{2,1,2}) \& (\sim x_{1,1,1} V \sim x_{2,1,1}) \& (\sim x_{1,1,2} V \sim x_{2,1,2})$
4 clauses 4 column 2:
$- (x_{1,2,1} \vee x_{2,2,1}) \& (x_{1,2,2} \vee x_{2,2,2}) \& (\sim x_{1,2,1} \vee \sim x_{2,2,1}) \& (\sim x_{1,2,2} \vee \sim x_{2,2,2})$
2 Initialization clauses: $x_{1,1,1} \& \sim x_{1,1,2}$

SAT

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Slide 8

Variants of SAT in CNF

□ 1-SAT: all clauses have <u>exactly</u> 1 literal

- Each clause is one literal
- If any 2 clauses are a variable & its complement, then reject
- E.g. $x_1 \& x_2 \& \sim x_3$ satisfied by $x_1 = 1, x_2 = 1, x_3 = 0$
- But add on clause $\sim x_1$ and unsatisfiable
- **2-SAT:** all clauses have *at most* 2 literals
 - Clause: (L_{i1} V L_{i2})
- □ 3-SAT: all clauses have *at most* 3 literals
 - Clause: ($L_{i1} V L_{i2} V L_{i3}$)
 - At least one literal in each clause must be true

The Simplest SAT Solver

- □ Generate all 2^v assignments to V variables
- ☐ For each assignment, check each clause
- **Satisfiable:** Some assignment makes all clauses true
- Unsatisfiable: no assignment works.

X	У	z	x V ~y	y V z	~xV~z	~xV~yVz	xVyV~z	Ai! Clauses	All but last
0	0	0	1	0	1	1	1	0	0
0	0	1	1	1	1	1	0	0	- - - - 1
0	1	0	0	1	1	1	1	0	0
0	1	1	0	1	1	1	1	0	0
1	0	0	1	0	1	1	1	0	0
1	0	1	1	1	0	1	1	0	0
1	1	0	1	1	1	0	1	0	0
1	1	1	1	1	0	1	1	0	0

Brute Force Approach

Brute Force Algorithm

Time Complexity: O(2^V*C*K)

- V = # variables
- C = # Clauses
- K = # Literals per Clause

Notre Dame CSE 34151: Theory of Computing: Fall 2017 SI

A Python Implementation

Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 13

Dividing by CK=# Literals

Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 14

Backtracking: Core to Real Solvers

- Consider "incremental" approach that generates assignment dynamically
- Keep track of state of clauses under current partial assignment; clauses may be
 - True: some literal in clause has a variable value that makes it true
 - False: all literals in clause have variable values that make literals false
 - Undetermined: one or more literals have variables without any current assigned value
- Keep "stack" of order of assignments to allow backtrack if current assignment doesn't work

Basic Backtracking

- □ Select some variable from a indeterminate clause
- Select value to give to that variable (to make some clause true)
 - Save (on stack) variable and value as a "CHOICE POINT"
- □ Ignore all clauses now true
- □ If no clause remains, declare "Satisfied"
 - Values on stack are satisfying assignment
- □ If some clause is now "false":
 - Go to top choice point, reverse value and try again
 - If top variable has tried both values, pop choice point, and repeat on choice point below below
 - If stack is now empty, declare "Unsatisfiable"
- If no clauses false and some still undetermined, repeat above on a different variable that has no value

Red: Backtrack to last Choice Point and try another

Another Example (xV~y)&(yVz)&(~xV~z)&(~xV~yVz)&(xVyV~z)

The Unit Clause Rule

- Additional trick: When a clause has only one undetermined literal
 - Add a choice point entry with that variable
 - Assign value to variable to make literal true
 - With flag that reversing value need not be tried
- □ Many other heuristics have been developed
- □ Average complexity greatly reduced

SAT

 \Box But for kSAT, k>2, worst case still O(2^V)

Special Case: 2SAT

- □ Speedup observation:
 - Assume we guess $x_i = 1$ (build a choice point)
 - All clauses with x_i as a literal are now true
- \Box Now look at all clauses of form (~x_i V L_j)
 - $\sim x_i$ is false from assignment
 - so L_i must be true => new assignment
 - Can repeat as long as we generate new assignments
- Backtrack when we get conflicting assignments to same variable
- □ Variations are *polynomial* even in worst case
 - Possible to get linear time

Alternative 2SAT Graph Algorithm

□ If V variables, generate 2V vertices

- pairs labelled x_i and $\sim x_i$
- For each clause (L_i V L_k) using variables x_i and x_k, generate 2 edges in the graph

$$- \sim L_i$$
 to L_k

 $- \sim L_k$ to L_i

Unsatisfiable if for any x_i there is a path

- from x_i to $\sim x_i$
- and $\sim x_i$ to x_i

Satisfiable if no such path

2SAT as **Domino** Chains

Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 22

Example:

(~x V y) & (x V y) & (x V ~y)

What happens when we add clause (~x V ~y)?

Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 23

Your Turn: Bipartite Matching

- □ What are variables?
- How to guarantee at least one match per vertex?
- How to guarantee only 1 match per vertx?

