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(p. 299) SAT: Boolean Satisfiability 

 wff: well-formed-formula constructed from 

– A set V of Boolean variables 

– Boolean operations AND, OR, NOT 

 Satisfiability: is there a substitution of 0s and 

1s to variables that makes the wff true 

– i.e. makes all clauses simultaneously true 

 Unsatisfiability: no substitution makes all 

clauses true at same time 

 See references in “Links” class page 
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CNF: Clausal Normal Form 

 wff restructured as AND of a set of clauses 

– Each clause an OR of a set of literals 

– Each literal a variable or its negation 

 For a wff in clausal form to be true 

– All clauses must be true 

– For any clause to be true at least one literal must 

be true 

 Example: (~x v y) & (x v y) & (x v ~y) 

– x=1, y=1 makes expression true 

 (~x v y) & (x v y) & (x v ~y) & (~x v ~y) 

– No assignment of values make this true 
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Why Does SAT Matter 

 Huge range of direct applications 

 Will show that ALL computable functions can 

be converted into a SAT problem 

 If we can solve SAT quickly, we can solve any 

computable problem quickly 

 But no one has been able to find such a 

solution! 
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Applications 

Following list taken from http://logos.ucd.ie/~jpms/talks/talksite/jpms-

wodes08.pdf 

 Circuit construction and simulation 

 Model checking: H/W, S/W, test patterns 

 AI: Planning; Knowledge representation; Games 

 Bioinformatics: Haplotype inference; Pedigree checking; 

Maximum quartet consistency; etc. 

 Design automation: 

 Equivalence checking; Delay computation; Fault diagnosis; Noise 

analysis; etc. 

 Security: Cryptanalysis; Inversion attacks on hash functions; etc. 

 Computationally hard problems: Graph coloring; Traveling 

salesperson; etc. 

 Mathematical problems: van der Waerden numbers; etc 

 Core engine for many other problem domains 
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SAT Problem Sizes 

 Hundreds of thousands to millions of variables 

 Huge numbers of clauses 

 Often very large numbers of literals per clause 

 Sample problem sources: 

– http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html 

 There is even a yearly competition that has 

been going on for decades 

– Current 2017: https://baldur.iti.kit.edu/sat-

competition-2017/index.php?cat=certificates 

– 2016: https://baldur.iti.kit.edu/sat-competition-

2016/index.php?cat=certificates 
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Example: Sudoku to SAT 

 Define 729 variables xi,j,d (1≤i,j,d≤9) such that 

– xi,j,d = 1 if cell (i,j) has digit d, 0 otherwise 

 81 clauses: 1 for each cell (i,j) to ensure it has a digit:  

– (xi,j,1 V xi,j,2 V … xi,j,9) 

 81 sets of 36 clauses to ensure no cell has 2 digits: 

– For each of 1≤d<d’≤9: (~xi,j,d V ~xi,j,d’) 

 To state that row i, for example, has all 9 digits: 

– AND of 9 clauses (1 for each value of d) where d’th clause is (xi,1,d V … V xi,9,d ) 

– And 9 sets of 36 = 324 clauses to ensure uniqueness (~xi,j,d V ~xi,j’,d) 

 Repeat construction for all rows, columns, grids 

 Total of 11,745 clauses (most with 2 literals/clause, rest have 9) 

 Initialize cells by setting certain variables, e.g. x1,1,5=1 and x1,1,d = 0 for d≠5 
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Fill in all blanks  

so 1…9 appear on  

every row, column,  

and 3x3 grid 
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A 2x2 Sudoku 

1 

 8 variables: x1,1,1, x1,1,2, x1,2,1, x1,2,2, x2,1,1, x2,1,2, x2,2,1, x2,2,2 

 4 clauses to ensure a digit/cell:  

– (x1,1,1 V x1,1,2)& (x1,2,1 V x1,2,2)&(x2,1,1 V x2,1,2)&(x2,2,1 V x2,2,2) 

 4 sets of 1 clause to ensure no duplicates:  

– (~x1,1,1 V ~x1,1,2)&(~x1,2,1 V ~x1,2,2)&(~x2,1,1 V ~x2,1,2)&(~x2,2,1 V ~x2,2,2) 

 4 clauses for row 1:  

– (x1,1,1 V x1,2,1)&(x1,1,2 V x1,2,2)&(~x1,1,1 V ~x1,2,1)&(~x1,1,2 V ~x1,2,2) 

 4 clauses for row 2:  

– (x2,1,1 V x2,2,1)&(x2,1,2 V x2,2,2)&(~x2,1,1 V ~x2,2,1)&(~x2,1,2 V ~x2,2,2) 

 4 clauses for column 1:  

– (x1,1,1 V x2,1,1)&(x1,1,2 V x2,1,2)&(~x1,1,1 V ~x2,1,1)&(~x1,1,2 V ~x2,1,2)  

 4 clauses 4 column 2:  

– (x1,2,1 V x2,2,1)&(x1,2,2 V x2,2,2) &(~x1,2,1 V ~x2,2,1)&(~x1,2,2 V ~x2,2,2) 

 2 Initialization clauses: x1,1,1 & ~x1,1,2 
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Variants of SAT in CNF 

 1-SAT: all clauses have exactly 1 literal 

– Each clause is one literal 

– If any 2 clauses are a variable & its complement, 

then reject 

– E.g. x1 & x2 & ~x3 satisfied by x1 =1,x2 =1, x3 =0 

– But add on clause ~x1 and unsatisfiable 

 2-SAT: all clauses have at most 2 literals 

– Clause: (Li1 V Li2) 

 3-SAT: all clauses have at most 3 literals 

– Clause: (Li1 V Li2 V Li3) 

– At least one literal in each clause must be true 
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The Simplest SAT Solver 

 Generate all 2V assignments to V variables 

 For each assignment, check each clause 

 Satisfiable: Some assignment makes all clauses true 

 Unsatisfiable: no assignment works 
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x y z x V ~y y V z ~xV~z ~xV~yVz xVyV~z All 

Clauses 

All but 

last 

0 0 0 1 0 1 1 1 0 0 

0 0 1 1 1 1 1 0 0 1 

0 1 0 0 1 1 1 1 0 0 

0 1 1 0 1 1 1 1 0 0 

1 0 0 1 0 1 1 1 0 0 

1 0 1 1 1 0 1 1 0 0 

1 1 0 1 1 1 0 1 0 0 

1 1 1 1 1 0 1 1 0 0 
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Brute Force Approach 
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Generate 

Next 
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Assignment 
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WFF not 

satisfied 

by 

assignment 

All clauses 

are true 

“Satisfiable” “Unsatisfiable” 

Tried all 

possible 

assignments 
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Brute Force Algorithm 
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for each combination of variable values 

    for each clause in wff 

        for each literal in clause 

            look up variable in assignment 

            if literal is true: break to next clause 

        if all literals are false:  

            break to next combination 

    if all clauses are true: break “Satisfiable” 

if no combination satisfied: “Unsatisfiable” 

 

K 

C 2V 

Time Complexity: O(2V*C*K) 
• V = # variables 

• C = # Clauses 

• K = # Literals per Clause 

Verifier 
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A Python Implementation 
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Dividing by CK=# Literals 
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Backtracking: Core to Real Solvers 

 Consider “incremental” approach that 

generates assignment dynamically 

 Keep track of state of clauses under current 

partial assignment; clauses may be 

– True: some literal in clause has a variable value 

that makes it true 

– False: all literals in clause have variable values that 

make literals false 

– Undetermined: one or more literals have variables 

without any current assigned value 

 Keep “stack” of order of assignments to allow 

backtrack if current assignment doesn’t work 
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Basic Backtracking 

 Select some variable from a indeterminate clause  

 Select value to give to that variable (to make some 

clause true) 

– Save (on stack) variable and value as a “CHOICE POINT” 

 Ignore all clauses now true 

 If no clause remains, declare “Satisfied” 

– Values on stack are satisfying assignment 

 If some clause is now “false”: 

– Go to top choice point, reverse value and try again 

– If top variable has tried both values, pop choice point,  and 

repeat on choice point below below 

– If stack is now empty, declare “Unsatisfiable” 

 If no clauses false and some still undetermined, 

repeat above on a different variable that has no value 
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Equivalent to a “Tree Traversal” 
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(xV~y)&(yVz)&(~xV~z)&(~xV~yVz) 
x=1 

(yVz)&(~z)&(~yVz) 

z=0 

(y)&(~y) 

Not Satisfiable! 

y=0 

(z)&(z) 

z=1 

Satisfied 

z=1 

Not Satisfiable! 

x=0 

(~y)&(yVz)&(~yVz) ` 

Red: Backtrack to last Choice Point and try another 
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Another Example 
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(xV~y)&(yVz)&(~xV~z)&(~xV~yVz)&(xVyV~z) 



Notre Dame CSE 34151: Theory of Computing: Fall 2017 

The Unit Clause Rule 

 Additional trick: When a clause has only one 

undetermined literal 

– Add a choice point entry with that variable  

– Assign value to variable to make literal true 

– With flag that reversing value need not be tried 

 Many other heuristics have been developed 

 Average complexity greatly reduced 

 But for kSAT, k>2, worst case still O(2V) 
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Special Case: 2SAT 

 Speedup observation: 

– Assume we guess xi = 1 (build a choice point) 

– All clauses with xi as a literal are now true 

 Now look at all clauses of form (~xi  V  Lj ) 

– ~xi is false from assignment 

– so Li must be true => new assignment 

– Can repeat as long as we generate new assignments 

 Backtrack when we get conflicting assignments 

to same variable 

 Variations are polynomial even in worst case 

– Possible to get linear time 
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Alternative 2SAT Graph Algorithm 

 If V variables, generate 2V vertices 

– pairs labelled xi and ~xi  

 For each clause (Li V Lk) using variables xi and 

xk, generate 2 edges in the graph 

– ~Li to Lk 

– ~Lk to Li   

 Unsatisfiable if for any xi there is a path 

– from xi to ~xi 

– and ~xi to xi 

 Satisfiable if no such path 
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2SAT as Domino Chains 
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from youtube 
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Example:  

(~x V y) & (x V y) & (x V ~y) 
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x 

y 

~x 

~y 

If x is false 

then y must be true 

If y is false 

then x must be true 

What happens when we add clause (~x V ~y)? 
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Your Turn: Bipartite Matching 

 What are variables? 

 How to guarantee at 

least one match per 

vertex? 

 How to guarantee 

only 1 match per 

vertx? 
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A 

B 
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1 

2 
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