
Notre Dame CSE 34151: Theory of Computing: Fall 2017

Boolean Satisfiability:

The Central Problem

of Computation

Peter Kogge

SAT Slide 1

Notre Dame CSE 34151: Theory of Computing: Fall 2017

(p. 299) SAT: Boolean Satisfiability

 wff: well-formed-formula constructed from

– A set V of Boolean variables

– Boolean operations AND, OR, NOT

 Satisfiability: is there a substitution of 0s and

1s to variables that makes the wff true

– i.e. makes all clauses simultaneously true

 Unsatisfiability: no substitution makes all

clauses true at same time

 See references in “Links” class page

SAT Slide 2

Notre Dame CSE 34151: Theory of Computing: Fall 2017

CNF: Clausal Normal Form

 wff restructured as AND of a set of clauses

– Each clause an OR of a set of literals

– Each literal a variable or its negation

 For a wff in clausal form to be true

– All clauses must be true

– For any clause to be true at least one literal must

be true

 Example: (~x v y) & (x v y) & (x v ~y)

– x=1, y=1 makes expression true

 (~x v y) & (x v y) & (x v ~y) & (~x v ~y)

– No assignment of values make this true

SAT Slide 3

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Why Does SAT Matter

 Huge range of direct applications

 Will show that ALL computable functions can

be converted into a SAT problem

 If we can solve SAT quickly, we can solve any

computable problem quickly

 But no one has been able to find such a

solution!

SAT Slide 4

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Applications

Following list taken from http://logos.ucd.ie/~jpms/talks/talksite/jpms-

wodes08.pdf

 Circuit construction and simulation

 Model checking: H/W, S/W, test patterns

 AI: Planning; Knowledge representation; Games

 Bioinformatics: Haplotype inference; Pedigree checking;

Maximum quartet consistency; etc.

 Design automation:

 Equivalence checking; Delay computation; Fault diagnosis; Noise

analysis; etc.

 Security: Cryptanalysis; Inversion attacks on hash functions; etc.

 Computationally hard problems: Graph coloring; Traveling

salesperson; etc.

 Mathematical problems: van der Waerden numbers; etc

 Core engine for many other problem domains

Introductio Slide 5

Notre Dame CSE 34151: Theory of Computing: Fall 2017

SAT Problem Sizes

 Hundreds of thousands to millions of variables

 Huge numbers of clauses

 Often very large numbers of literals per clause

 Sample problem sources:

– http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

 There is even a yearly competition that has

been going on for decades

– Current 2017: https://baldur.iti.kit.edu/sat-

competition-2017/index.php?cat=certificates

– 2016: https://baldur.iti.kit.edu/sat-competition-

2016/index.php?cat=certificates

SAT Slide 6

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Example: Sudoku to SAT

 Define 729 variables xi,j,d (1≤i,j,d≤9) such that

– xi,j,d = 1 if cell (i,j) has digit d, 0 otherwise

 81 clauses: 1 for each cell (i,j) to ensure it has a digit:

– (xi,j,1 V xi,j,2 V … xi,j,9)

 81 sets of 36 clauses to ensure no cell has 2 digits:

– For each of 1≤d<d’≤9: (~xi,j,d V ~xi,j,d’)

 To state that row i, for example, has all 9 digits:

– AND of 9 clauses (1 for each value of d) where d’th clause is (xi,1,d V … V xi,9,d)

– And 9 sets of 36 = 324 clauses to ensure uniqueness (~xi,j,d V ~xi,j’,d)

 Repeat construction for all rows, columns, grids

 Total of 11,745 clauses (most with 2 literals/clause, rest have 9)

 Initialize cells by setting certain variables, e.g. x1,1,5=1 and x1,1,d = 0 for d≠5

SAT Slide 7

Fill in all blanks

so 1…9 appear on

every row, column,

and 3x3 grid

Notre Dame CSE 34151: Theory of Computing: Fall 2017

A 2x2 Sudoku

1

 8 variables: x1,1,1, x1,1,2, x1,2,1, x1,2,2, x2,1,1, x2,1,2, x2,2,1, x2,2,2

 4 clauses to ensure a digit/cell:

– (x1,1,1 V x1,1,2)& (x1,2,1 V x1,2,2)&(x2,1,1 V x2,1,2)&(x2,2,1 V x2,2,2)

 4 sets of 1 clause to ensure no duplicates:

– (~x1,1,1 V ~x1,1,2)&(~x1,2,1 V ~x1,2,2)&(~x2,1,1 V ~x2,1,2)&(~x2,2,1 V ~x2,2,2)

 4 clauses for row 1:

– (x1,1,1 V x1,2,1)&(x1,1,2 V x1,2,2)&(~x1,1,1 V ~x1,2,1)&(~x1,1,2 V ~x1,2,2)

 4 clauses for row 2:

– (x2,1,1 V x2,2,1)&(x2,1,2 V x2,2,2)&(~x2,1,1 V ~x2,2,1)&(~x2,1,2 V ~x2,2,2)

 4 clauses for column 1:

– (x1,1,1 V x2,1,1)&(x1,1,2 V x2,1,2)&(~x1,1,1 V ~x2,1,1)&(~x1,1,2 V ~x2,1,2)

 4 clauses 4 column 2:

– (x1,2,1 V x2,2,1)&(x1,2,2 V x2,2,2) &(~x1,2,1 V ~x2,2,1)&(~x1,2,2 V ~x2,2,2)

 2 Initialization clauses: x1,1,1 & ~x1,1,2

SAT Slide 8

1 2

2 1

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Variants of SAT in CNF

 1-SAT: all clauses have exactly 1 literal

– Each clause is one literal

– If any 2 clauses are a variable & its complement,

then reject

– E.g. x1 & x2 & ~x3 satisfied by x1 =1,x2 =1, x3 =0

– But add on clause ~x1 and unsatisfiable

 2-SAT: all clauses have at most 2 literals

– Clause: (Li1 V Li2)

 3-SAT: all clauses have at most 3 literals

– Clause: (Li1 V Li2 V Li3)

– At least one literal in each clause must be true

SAT Slide 9

Notre Dame CSE 34151: Theory of Computing: Fall 2017

The Simplest SAT Solver

 Generate all 2V assignments to V variables

 For each assignment, check each clause

 Satisfiable: Some assignment makes all clauses true

 Unsatisfiable: no assignment works

SAT Slide 10

x y z x V ~y y V z ~xV~z ~xV~yVz xVyV~z All

Clauses

All but

last

0 0 0 1 0 1 1 1 0 0

0 0 1 1 1 1 1 0 0 1

0 1 0 0 1 1 1 1 0 0

0 1 1 0 1 1 1 1 0 0

1 0 0 1 0 1 1 1 0 0

1 0 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 1 0 0

1 1 1 1 1 0 1 1 0 0

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Brute Force Approach

SAT Slide 11

Generate

Next

Possible

Assignment

Verify if

Assignment

“Satisfies”

WFF

WFF not

satisfied

by

assignment

All clauses

are true

“Satisfiable” “Unsatisfiable”

Tried all

possible

assignments

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Brute Force Algorithm

SAT Slide 12

for each combination of variable values

 for each clause in wff

 for each literal in clause

 look up variable in assignment

 if literal is true: break to next clause

 if all literals are false:

 break to next combination

 if all clauses are true: break “Satisfiable”

if no combination satisfied: “Unsatisfiable”

K

C 2V

Time Complexity: O(2V*C*K)
• V = # variables

• C = # Clauses

• K = # Literals per Clause

Verifier

Notre Dame CSE 34151: Theory of Computing: Fall 2017

A Python Implementation

SAT Slide 13

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1 10 100

Ti
m

e
 (

M
ic

ro
se

co
n

d
s)

Variables
S2 S3 S4 S5 S6 U2 U3 U4 U5 U6

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Dividing by CK=# Literals

SAT Slide 14

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1 10 100

Ti
m

e/
Li

te
ra

l (
M

ic
ro

se
co

n
d

s)

Number of Variables
Satisfiable Unsatisfiable 46+0.19*2^V

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Backtracking: Core to Real Solvers

 Consider “incremental” approach that

generates assignment dynamically

 Keep track of state of clauses under current

partial assignment; clauses may be

– True: some literal in clause has a variable value

that makes it true

– False: all literals in clause have variable values that

make literals false

– Undetermined: one or more literals have variables

without any current assigned value

 Keep “stack” of order of assignments to allow

backtrack if current assignment doesn’t work

SAT Slide 15

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Basic Backtracking

 Select some variable from a indeterminate clause

 Select value to give to that variable (to make some

clause true)

– Save (on stack) variable and value as a “CHOICE POINT”

 Ignore all clauses now true

 If no clause remains, declare “Satisfied”

– Values on stack are satisfying assignment

 If some clause is now “false”:

– Go to top choice point, reverse value and try again

– If top variable has tried both values, pop choice point, and

repeat on choice point below below

– If stack is now empty, declare “Unsatisfiable”

 If no clauses false and some still undetermined,

repeat above on a different variable that has no value

SAT Slide 16

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Equivalent to a “Tree Traversal”

SAT Slide 17

(xV~y)&(yVz)&(~xV~z)&(~xV~yVz)
x=1

(yVz)&(~z)&(~yVz)

z=0

(y)&(~y)

Not Satisfiable!

y=0

(z)&(z)

z=1

Satisfied

z=1

Not Satisfiable!

x=0

(~y)&(yVz)&(~yVz) `

Red: Backtrack to last Choice Point and try another

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Another Example

SAT Slide 18

(xV~y)&(yVz)&(~xV~z)&(~xV~yVz)&(xVyV~z)

Notre Dame CSE 34151: Theory of Computing: Fall 2017

The Unit Clause Rule

 Additional trick: When a clause has only one

undetermined literal

– Add a choice point entry with that variable

– Assign value to variable to make literal true

– With flag that reversing value need not be tried

 Many other heuristics have been developed

 Average complexity greatly reduced

 But for kSAT, k>2, worst case still O(2V)

SAT Slide 19

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Special Case: 2SAT

 Speedup observation:

– Assume we guess xi = 1 (build a choice point)

– All clauses with xi as a literal are now true

 Now look at all clauses of form (~xi V Lj)

– ~xi is false from assignment

– so Li must be true => new assignment

– Can repeat as long as we generate new assignments

 Backtrack when we get conflicting assignments

to same variable

 Variations are polynomial even in worst case

– Possible to get linear time

SAT Slide 20

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Alternative 2SAT Graph Algorithm

 If V variables, generate 2V vertices

– pairs labelled xi and ~xi

 For each clause (Li V Lk) using variables xi and

xk, generate 2 edges in the graph

– ~Li to Lk

– ~Lk to Li

 Unsatisfiable if for any xi there is a path

– from xi to ~xi

– and ~xi to xi

 Satisfiable if no such path

SAT Slide 21

Notre Dame CSE 34151: Theory of Computing: Fall 2017

2SAT as Domino Chains

SAT Slide 22

from youtube

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Example:

(~x V y) & (x V y) & (x V ~y)

SAT Slide 23

x

y

~x

~y

If x is false

then y must be true

If y is false

then x must be true

What happens when we add clause (~x V ~y)?

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Your Turn: Bipartite Matching

 What are variables?

 How to guarantee at

least one match per

vertex?

 How to guarantee

only 1 match per

vertx?

SAT Slide 24

A

B

C

1

2

3

