• Remember: a language is Turing recognizable if some TM accepts it.
• Adding “features” may simplify programmability but DO NOT affect what a TM can compute.
 • Anything a “fancy” TM can compute, can be computed with a basic TM (perhaps with more complex set of δs.)
• Option to “stay still” (p. 176) (not move head)
 • $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\} – S$ means stay still
 • $\delta(q,a) \rightarrow (r,b,S)$ can be replaced by 2 transitions of standard TM
 • $\delta(q,a) \rightarrow (r_1,b,R)$
 • $\delta(r_1,x) \rightarrow (q,x,L)$ for all x in Γ
 • Thus no TM with “S” option can compute anything not computable by basic TM
 • But may be “faster” or easier to program
• **MultiTape TM** (p. 176)

 • Assume M has *k* tapes: all use same *Γ*

 • 1\(^{st}\) one as in basic machine (i.e. holds initial input)

 • Rest are initially all blank

 • Separate read/write head under each tape

 • That can be moved individually

 • δ: Q x Γ\(^k\) -> Q x Γ\(^k\) x \{L,R,S\}\(^k\)

 • δ(q,a\(_1\), ..., a\(_k\)) = (r, b\(_1\), ..., b\(_k\), d\(_1\), ..., d\(_k\)) means

 • If in state q, and for all 1≤i≤k, tape i has a\(_i\) under its head

 • Then for all I, change a\(_i\) to b\(_i\) on tape i

 • And for all I, move tape i in direction d\(_i\)

 • Proof: assume M is a k tape TM (Q,Σ,Γ,δ,q\(_{start}\),q\(_{accept}\),q\(_{reject}\)). Construct equivalent 1-tape TM S (Q',Σ,Γ',δ',q\(_{start}'\),q\(_{accept}'\),q\(_{reject}'\)) as follows:

 • Assume starting tape is w\(_1\)...w\(_n\)

 • Add new characters to Γ′

 • For each x in Γ, add a new symbol x′ to Γ′

 ‘ indicates a tape head is on that cell

 • Include a □′

 • Add a special symbol # to Γ′

 • To mark start of a new simulated “tape”
• Add new initial states with transitions that do following
 • Insert a # onto left of tape, moving \(w \) right one place
 • Replace \(w_1 \) by \(w_1' \)
 • Write \(k-1 \) copies of \(\#\square' \) to end of \(w \)
 • Write a final # at end
 • Resulting tape looks like \#w_1'...w_n\#\square'\#\square'...\#\square'\#
• The \(i \)th “#” indicate the start of the \(i \)th tape
• The \(i \)th ‘ed symbol indicates the current position of the \(i \)th tape head
• (p. 177) Fig. 3.14 diagrams 3-tape example
• To simulate with \(S \) a single transition of \(M \) from state \(q \)
 • Sequentially try each rule from \(M \) that starts with \(q \):
 • Move to the \(i \)th ‘ed symbol and compare to \(a_i \)
 • If we find a mismatch, quit and try next rule
 • If we have match on all \(a_i \)s, go back to start of tape and go back to each ‘ed symbol in sequence
 • Replace by \(b_i \)
 • Move simulated tape head \(i \) by moving L, R, or S, and replace that symbol by its ‘ed version
 • On a move R where we hit a #
 • 1st move entire rest of string right one position
 • Then write a blank
B: Bidirectional Infinite Tape

- Tape goes on forever in both directions, not just right
- First emulate on a 2-tape TM
 - Tape 1 is the right hand side of the double sided tape
 - Tape 2 is the left handed side of the double sided tape
 - Have a special # on start of both sides of tape
 - Two sets of states from B:
 - one where we are on right hand side of B’s tape
 - other where we are on left hand side of B’s tape
 - If in a right-side of tape state and move L, add additional states to check if new cell is cell 0
 - This is case where B has crossed the center of its tape, moving left
 - If so, switch to correct state on 2^{nd} tape
 - And whenever original state says move left, new transition says more right, and vice versa
 - If on 2^{nd} tape, and move right into a cell with a #
 - I.E. have crossed the center of the original tape and moving right
 - Move left to cell 0, switch to equivalent state that uses 1^{st} tape
- Then emulate 2-tape machine on a basic TM
• S: TM with a Stack
 • \(\delta:Q \times \Gamma_1 \times \Gamma_2 \rightarrow Q \times \Gamma_1' \times \Gamma_2' \times \{L, R\} \)
 • \(\Gamma_2 \): tape characters
 • \(\Gamma_1 \): stack characters
 • Having a stack is useful to simplify programming by supporting subroutines and recursive operations
 • Solution: Simulate on a 2-tape machine
 • One tape is original tape
 • 2nd tape is stack
 • \(\Gamma_1' \) and \(\Gamma_2' \) include duplicates of \(\Gamma_1 \) and \(\Gamma_2 \) i.e. a and a’ where ‘ed symbols represent “top of stack”
 • Any push or pop to stack causes switch to states that modify just stack
 • Then emulate 2-tape on single tape
• (p. 178) **NTM: NonDeterministic TMs**
 • $\delta: Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R,\})$
 • Each (q, a) can lead to one of a set of transitions
 • There are multiple choices for each state & tape symbol
 • If *any* of these choices lead to an accept state, then TM accepts its input

• (p. 179) **Theorem 3.16:** Every nondeterministic TM N has equivalent deterministic TM D
 • Solution: have D work thru each possible variation in N’s transitions sequentially
 • In a breadth-first exploration of tree of choices
 • Each node in tree is a configuration of N
 • Root node is initial configuration
 • Explore all possible set of choices at level k before trying any choices at level $k+1$
 • If any choice leads to q_{accept}, accept
 • If all choices lead to q_{reject}, reject
 • Looping is still possible
D has 3 tapes (see Fig. 3.17 on page 179)
- Tape 1: Input tape – never changed
- Tape 2: Simulation tape: copy of N’s tape having made one set of choices
- Tape 3: Keeps track of which node in tree Tape 2 represents
- Let $b =$ size of largest set of possible choices from one transition
- $\Gamma_3 = \{1, \ldots b\}$
- Eg. 431 on tape 3 means tape 2 represents
 - Having made 4^{nd} choice at root,
 - Having made 3^{rd} choice from above
 - Having made 1^{st} choice from above
- Computation as follows:
 - Copy tape 1 to 2
 - Initialize tape 3 to ε
 - Use Tape 2 to simulate one branch of N’s tree
 - Before each step of N, consult next symbol on tape 3 to determine which choice to make
 - If accepting configuration found, enter accept state
• Replace string on tape 3 with next string in tree ordering and restart if any of following
 • No more symbols on tape 3
 • Simulation ended up “invalid”
 • Choice on tape is invalid
• D clearly computes anything N does but with 3 tapes
 • But a 3-tape TM can be simulated by a 1 tape TM
 • SLOWLY!!!
 • Thus N can be simulated by a basic 1-Tape TM!
• (p. 180) Corollary 3.18. A language is Turing-recognizable if some NTM recognizes it
 • Proof: all NTMs can be converted into a TM
• A NTM is a Decider if all branches halt
 • In proof of Theorem 3.16 we can modify simulation of N so that if N always halts then so does D.
 • Thus Corollary 3.19: L is decidable iff some NTM decides it
(p. 180) An **Enumerator** of a language L is a TM with
- A “printer” where each rule can also output a symbol
- An initial blank “work tape”
- A set of rules that uses work tape to generate all possible strings from a language
 - And write each string to the printer

(p. 181) **Theorem 3.21** A language L is Turing-recognizable iff some enumerator can enumerate it.

- If: assume TM E enumerates L, following TM M accepts it
 - Given a string w, M runs E from start
 - For each string that is output, compare it to w
 - If ever a match, accept it
 - All (and only) w’s from L will be accepted!

- Only if: Assume TM M accepts L, construct E as follows:
 - Build an enumerator E’ for all strings in Σ*
 - Do the following for i=1, 2,
 - Run E’ to generate next string
 - For each output from E’ run M for exactly i steps
 - Guarantees we will stop
 - If accepted, print out string from E’
 - Equivalent logically to running parallel set of Ms, each running on a different string from Σ*
• **Summary of all this**

 • No computer can compute anything that basic TM cannot
 • With caveat of enough memory
 • Thus all computers compute *exactly* the same class of algorithms

 • Any reasonable programming language can be used to write a TM emulator
 • Thus any reasonable programming language can be compiled into any other reasonable language
 • Thus all programming languages describe *exactly* the same class of algorithms