
1

pp. 176-176-182. Variants of Turing Machines (Sec. 3.2)

 Remember: a language is Turing recognizable if some

TM accepts it.

 Adding “features” may simplify programmability but

DO NOT affect what a TM can compute.

 Anything a “fancy” TM can compute, can be computed

with a basic TM (perhaps with more complex set of δs.)

 Option to “stay still” (p. 176) (not move head)

 δ:QxΓ -> QxΓx {L, R, S} – S means stay still

 δ(q,a) -> (r,b,S) can be replaced by 2 transitions of

standard TM

 δ(q,a) -> (r1,b,R)

 δ(r1,x) -> (q,x,L) for all x in Γ

 Thus no TM with “S” option can compute anything not

computable by basic TM

 But may be “faster” or easier to program

2

 MultiTape TM (p. 176)

 Assume M has k tapes: all use same Γ

 1st one as in basic machine (i.e. holds initial input)

 Rest are initially all blank

 Separate read/write head under each tape

 That can be moved individually

 δ: Q x Γk -> Q x Γk x {L,R,S}k

 δ(q,a1, … ak) = (r, b1, … bk, d1, … dk) means

 If in state q, and for all 1≤i≤k, tape i has ai under its

head

 Then for all I, change ai to bi on tape i

 And for all I, move tape i in direction di

 Proof: assume M is a k tape TM (Q,Σ,Γ,δ,qstart,qaccept,qreject).

Construct equivalent 1-tape TM S

(Q’,Σ,Γ’,δ’,qstart’,qaccept,qreject) as follows:

 Assume starting tape is w1…wn

 Add new characters to Γ’

 For each x in Γ, add a new symbol x’ to Γ’

 ‘ indicates a tape head is on that cell

 Include a □’

 Add a special symbol # to Γ’

 To mark start of a new simulated “tape”

3

 Add new initial states with transitions that do following

 Insert a # onto left of tape, moving w right one place

 Replace w1 by w1’

 Write k-1 copies of #□’ to end of w

 Write a final # at end

 Resulting tape looks like #w1’…wn#□’#□’ … #□’#

 The ith “#” indicate the start of the ith tape

 The ith ‘ed symbol indicates the current position of

the ith tape head

 (p. 177) Fig. 3.14 diagrams 3-tape example

 To simulate with S a single transition of M from state q

 Sequentially try each rule from M that starts with q:

 Move to the ith ‘ed symbol and compare to ai

 If we find a mismatch, quit and try next rule

 If we have match on all ais, go back to start of tape

and go back to each ‘ed symbol in sequence

 Replace by bi

 Move simulated tape head i by moving L, R, or S,

and replace that symbol by its ‘ed version

 On a move R where we hit a #

 1st move entire rest of string right one position

 Then write a blank

4

 B: Bidirectional Infinite Tape

 Tape goes on forever in both directions, not just right

 First emulate on a 2-tape TM

 Tape 1 is the right hand side of the double sided tape

 Tape 2 is the left handed side of the double sided tape

 Have a special # on start of both sides of tape

 Two sets of states from B:

 one where we are on right hand side of B’s tape

 other where we are on left hand side of B’s tape

 If in a right-side of tape state and move L, add

additional states to check if new cell is cell 0

 This is case where B has crossed the center of its

tape, moving left

 If so, switch to correct state on 2nd tape

 And whenever original state says move left, new

transition says more right, and vice versa

 If on 2nd tape, and move right into a cell with a #

 I.E. have crossed the center of the original tape and

moving right

 Move left to cell 0, switch to equivalent state that

uses 1st tape

 Then emulate 2-tape machine on a basic TM

5

 S: TM with a Stack

 δ:QxΓ1x Γ2 -> Qx Γ1’x Γ2’ x {L, R}

 Γ2: tape characters

 Γ1: stack characters

 Having a stack is useful to simplify programming by

supporting subroutines and recursive operations

 Solution: Simulate on a 2-tape machine

 One tape is original tape

 2nd tape is stack

 Γ1’ and Γ2’ include duplicates of Γ1 and Γ2 i.e. a and a’

where ‘ed symbols represent “top of stack’

 Any push or pop to stack causes switch to states that

modify just stack

 Then emulate 2-tape on single tape

6

 (p. 178) NTM: NonDeterministic TMs

 δ:QxΓ -> P(QxΓx {L, R,})

 Each (q,a) can lead to one of a set of transitions

 There are multiple choices for each state & tape symbol

 If any of these choices lead to an accept state, then TM

accepts its input

 (p. 179) Theorem 3.16: Every nondeterministic TM N has

equivalent deterministic TM D

 Solution: have D work thru each possible variation in

N’s transitions sequentially

 In a breadth-first exploration of tree of choices

 Each node in tree is a configuration of N

 Root node is initial configuration

 Explore all possible set of choices at level k before

trying any choices at level k+1

 If any choice leads to qaccept, accept

 If all choices lead to qreject, reject

 Looping is still possible

7

 D has 3 tapes (see Fig. 3.17 on page 179)

 Tape 1: Input tape – never changed

 Tape 2: Simulation tape: copy of N’s tape having

made one set of choices

 Tape 3: Keeps track of which node in tree Tape 2

represents

 Let b = size of largest set of possible choices from

one transition

 Γ3 = {1, …b}

 Eg. 431 on tape 3 means tape 2 represents

 Having made 4nd choice at root,

 Having made 3rd choice from above

 Having made 1st choice from above

 Computation as follows:

 Copy tape 1 to 2

 Initialize tape 3 to ε

 Use Tape 2 to simulate one branch of N’s tree

 Before each step of N, consult next symbol on

tape 3 to determine which choice to make

 If accepting configuration found, enter accept

state

8

 Replace string on tape 3 with next string in tree

ordering and restart if any of following

 No more symbols on tape 3

 Simulation ended up “invalid”

 Choice on tape is invalid

 D clearly computes anything N does but with 3 tapes

 But a 3-tape TM can be simulated by a 1 tape TM

 SLOWLY!!!

 Thus N can be simulated by a basic 1-Tape TM!

 (p. 180) Corollary 3.18. A language is Turing-

recognizable if some NTM recognizes it

 Proof: all NTMs can be converted into a TM

 A NTM is a Decider if all branches halt

 In proof of Theorem 3.16 we can modify simulation of N

so that if N always halts then so does D.

 Thus Corollary 3.19: L is decidable iff some NTM decides it

9

 (p. 180) An Enumerator of a language L is a TM with

 A “printer” where each rule can also output a symbol

 An initial blank “work tape”

 A set of rules that uses work tape to generate all

possible strings from a language

 And write each string to the printer

 (p. 181) Theorem 3.21 A language L is Turing-

recognizable iff some enumerator can enumerate it.

 If: assume TM E enumerates L , following TM M accepts it

 Given a string w, M runs E from start

 For each string that is output, compare it to w

 If ever a match, accept it

 All (and only) w’s from L will be accepted!

 Only if: Assume TM M accepts L, construct E as follows:

 Build an enumerator E’ for all strings in ∑*

 Do the following for i=1, 2, ….

 Run E’ to generate next string

 For each output from E’ run M for exactly i steps

 Guarantees we will stop

 If accepted, print out string from E’

 Equivalent logically to running parallel set of Ms, each

running on a different string from ∑*

10

 Summary of all this
 No computer can compute anything that basic TM cannot

 With caveat of enough memory

 Thus all computers compute exactly the same class of

algorithms

 Any reasonable programming language can be used to

write a TM emulator

 Thus any reasonable programming language can be

compiled into any other reasonable language

 Thus all programming languages describe exactly the

same class of algorithms

