pp. 176-176-182. Variants of Turing Machines (Sec. 3.2)

- Remember: a language is Turing recognizable if some TM accepts it.
- Adding "features" may simplify programmability but DO NOT affect what a TM can compute.
- Anything a "fancy" TM can compute, can be computed with a basic TM (perhaps with more complex set of δs.)
- Option to "stay still" (p. 176) (not move head)
- $\delta: \mathrm{Qx} \Gamma$-> $\mathrm{Qx}[x\{\mathrm{~L}, \mathrm{R}, \mathrm{S}\}-\mathrm{S}$ means stay still
- $\delta(q, a)->(r, b, S)$ can be replaced by 2 transitions of standard TM
- $\delta(q, a)->\left(r_{1}, b, R\right)$
- $\delta\left(r_{1}, x\right)->(q, x, L)$ for all x in Γ
- Thus no TM with "S" option can compute anything not computable by basic TM
- But may be "faster" or easier to program
- MultiTape TM (p. 176)
- Assume M has k tapes: all use same Γ
- $1^{\text {st }}$ one as in basic machine (i.e. holds initial input)
- Rest are initially all blank
- Separate read/write head under each tape
- That can be moved individually
- $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, S\}^{k}$
- $\delta\left(q, a_{1}, \ldots a_{k}\right)=\left(r, b_{1}, \ldots b_{k}, d_{1}, \ldots d_{k}\right)$ means
- If in state q , and for all $1 \leq i \leq k$, tape i has a_{i} under its head
- Then for all I, change a_{i} to b_{i} on tape i
- And for all I, move tape i in direction d_{i}
- Proof: assume M is a k tape $T M\left(Q, \Sigma, \Gamma, \delta, \mathrm{q}_{\text {start }}, \mathrm{q}_{\text {accept }}, \mathrm{q}_{\text {reject }}\right)$.

Construct equivalent 1-tape TM S
($Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{\text {start }}, q_{\text {accept }}, q_{\text {reject }}$) as follows:

- Assume starting tape is $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}$
- Add new characters to Γ '
- For each x in Γ, add a new symbol x to Γ^{\prime}
- 'indicates a tape head is on that cell
- Include a \square^{\prime}
- Add a special symbol \# to 「'
- To mark start of a new simulated "tape"
- Add new initial states with transitions that do following
- Insert a \# onto left of tape, moving w right one place
- Replace w_{1} by $\mathrm{w}_{1}{ }^{\prime}$
- Write k-1 copies of \#■' to end of w
- Write a final \# at end
- Resulting tape looks like $\# w_{1}{ }^{\prime} . . . \mathrm{w}_{\mathrm{n}} \# \square^{\prime} \# \square^{\prime} . . . \# \square^{\prime} \#$
- The ith " $\#$ " indicate the start of the ith tape
- The ith 'ed symbol indicates the current position of the ith tape head
- (p. 177) Fig. 3.14 diagrams 3-tape example
- To simulate with S a single transition of M from state q
- Sequentially try each rule from M that starts with q :
- Move to the ith 'ed symbol and compare to a_{i}
- If we find a mismatch, quit and try next rule
- If we have match on all $a_{i} s$, go back to start of tape and go back to each 'ed symbol in sequence
- Replace by b_{i}
- Move simulated tape head i by moving L, R, or S, and replace that symbol by its 'ed version
- On a move R where we hit a \#
- $1^{\text {st }}$ move entire rest of string right one position
- Then write a blank
- B: Bidirectional Infinite Tape
- Tape goes on forever in both directions, not just right
- First emulate on a 2-tape TM
- Tape 1 is the right hand side of the double sided tape
- Tape 2 is the left handed side of the double sided tape
- Have a special \# on start of both sides of tape
- Two sets of states from B:
- one where we are on right hand side of B's tape
- other where we are on left hand side of B's tape
- If in a right-side of tape state and move L, add additional states to check if new cell is cell 0
- This is case where B has crossed the center of its tape, moving left
- If so, switch to correct state on $2^{\text {nd }}$ tape
- And whenever original state says move left, new transition says more right, and vice versa
- If on $2^{\text {nd }}$ tape, and move right into a cell with a \#
- I.E. have crossed the center of the original tape and moving right
- Move left to cell 0 , switch to equivalent state that uses $1^{\text {st }}$ tape
- Then emulate 2-tape machine on a basic TM
- S: TM with a Stack
- $\delta: Q x \Gamma_{1} \times \Gamma_{2}->\operatorname{Qx} \Gamma 1^{\prime} \times \Gamma_{2}^{\prime} \times\{L, R\}$
- Γ_{2} : tape characters
- Γ_{1} : stack characters
- Having a stack is useful to simplify programming by supporting subroutines and recursive operations
- Solution: Simulate on a 2-tape machine
- One tape is original tape
- $2^{\text {nd }}$ tape is stack
- $\Gamma 1^{\prime}$ and Γ_{2}^{\prime} include duplicates of Γ_{1} and Γ_{2} i.e. a and a^{\prime} where 'ed symbols represent "top of stack'
- Any push or pop to stack causes switch to states that modify just stack
- Then emulate 2-tape on single tape
- (p. 178) NTM: NonDeterministic TMs
- $\delta: Q x \Gamma$-> P(Qx「x \{L, R, \})
- Each (q, a) can lead to one of a set of transitions
- There are multiple choices for each state \& tape symbol
- If any of these choices lead to an accept state, then TM accepts its input
- (p. 179) Theorem 3.16: Every nondeterministic TM N has equivalent deterministic TM D
- Solution: have D work thru each possible variation in N's transitions sequentially
- In a breadth-first exploration of tree of choices
- Each node in tree is a configuration of N
- Root node is initial configuration
- Explore all possible set of choices at level k before trying any choices at level $\mathrm{k}+1$
- If any choice leads to $\mathrm{q}_{\text {accept }}$, accept
- If all choices lead to $\mathrm{q}_{\text {reject }}$ reject
- Looping is still possible
- D has 3 tapes (see Fig. 3.17 on page 179)
- Tape 1: Input tape - never changed
- Tape 2: Simulation tape: copy of N's tape having made one set of choices
- Tape 3: Keeps track of which node in tree Tape 2 represents
- Let $b=$ size of largest set of possible choices from one transition
- $\Gamma_{3}=\{1, \ldots b\}$
- Eg. 431 on tape 3 means tape 2 represents
- Having made $4^{\text {nd }}$ choice at root,
- Having made $3^{\text {rd }}$ choice from above
- Having made $1^{\text {st }}$ choice from above
- Computation as follows:
- Copy tape 1 to 2
- Initialize tape 3 to ε
- Use Tape 2 to simulate one branch of N's tree
- Before each step of N, consult next symbol on tape 3 to determine which choice to make
- If accepting configuration found, enter accept state
- Replace string on tape 3 with next string in tree ordering and restart if any of following
- No more symbols on tape 3
- Simulation ended up "invalid"
- Choice on tape is invalid
- D clearly computes anything N does but with 3 tapes
- But a 3-tape TM can be simulated by a 1 tape TM
- SLOWLY!!!
- Thus N can be simulated by a basic 1-Tape TM!
- (p. 180) Corollary 3.18. A language is Turingrecognizable if some NTM recognizes it
- Proof: all NTMs can be converted into a TM
- A NTM is a Decider if all branches halt
- In proof of Theorem 3.16 we can modify simulation of N so that if N always halts then so does D .
- Thus Corollary 3.19: L is decidable iff some NTM decides it
- (p. 180) An Enumerator of a language L is a TM with
- A "printer" where each rule can also output a symbol
- An initial blank "work tape"
- A set of rules that uses work tape to generate all possible strings from a language
- And write each string to the printer
- (p. 181) Theorem 3.21 A language L is Turingrecognizable iff some enumerator can enumerate it.
- If: assume TM E enumerates L, following TM M accepts it
- Given a string w, M runs E from start
- For each string that is output, compare it to w
- If ever a match, accept it
- All (and only) w's from L will be accepted!
- Only if: Assume TM M accepts L, construct E as follows:
- Build an enumerator E^{\prime} for all strings in Σ^{*}
- Do the following for $\mathrm{i}=1,2, \ldots$.
- Run E^{\prime} to generate next string
- For each output from E' run M for exactly i steps
- Guarantees we will stop
- If accepted, print out string from E'
- Equivalent logically to running parallel set of Ms , each running on a different string from \sum^{*}
- Summary of all this
- No computer can compute anything that basic TM cannot
- With caveat of enough memory
- Thus all computers compute exactly the same class of algorithms
- Any reasonable programming language can be used to write a TM emulator
- Thus any reasonable programming language can be compiled into any other reasonable language
- Thus all programming languages describe exactly the same class of algorithms

