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pp. 176-176-182. Variants of Turing Machines (Sec. 3.2) 

 Remember: a language is Turing recognizable if some 

TM accepts it. 

 Adding “features” may simplify programmability but 

DO NOT affect what a TM can compute. 

 Anything a “fancy” TM can compute, can be computed 

with a basic TM (perhaps with more complex set of δs.) 

 Option to “stay still” (p. 176) (not move head) 

 δ:QxΓ -> QxΓx {L, R, S} – S means stay still 

 δ(q,a) -> (r,b,S) can be replaced by 2 transitions of 

standard TM 

 δ(q,a) -> (r1,b,R) 

 δ(r1,x) -> (q,x,L) for all x in Γ 

 Thus no TM with “S” option can compute anything not 

computable by basic TM 

 But may be “faster” or easier to program 

  



2 
 

 MultiTape TM (p. 176) 

 Assume M has k tapes: all use same Γ 

 1st one as in basic machine (i.e. holds initial input) 

 Rest are initially all blank 

 Separate read/write head under each tape 

 That can be moved individually 

 δ: Q x Γk -> Q x Γk x {L,R,S}k  

 δ(q,a1, … ak) = (r, b1, … bk, d1, … dk) means 

 If in state q, and for all 1≤i≤k, tape i has ai under its 

head 

 Then for all I, change ai to bi on tape i 

 And for all I, move tape i in direction di 

 Proof: assume M is a k tape TM (Q,Σ,Γ,δ,qstart,qaccept,qreject). 

Construct equivalent 1-tape TM S 

(Q’,Σ,Γ’,δ’,qstart’,qaccept,qreject) as follows: 

 Assume starting tape is w1…wn  

 Add new characters to Γ’ 

 For each x in Γ, add a new symbol x’ to Γ’ 

 ‘ indicates a tape head is on that cell 

 Include a □’ 

 Add a special symbol # to Γ’ 

 To mark start of a new simulated “tape” 
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 Add new initial states with transitions that do following 

 Insert a # onto left of tape, moving w right one place 

 Replace w1 by w1’ 

 Write k-1 copies of #□’ to end of w 

 Write a final # at end 

 Resulting tape looks like #w1’…wn#□’#□’ … #□’# 

 The ith “#” indicate the start of the ith tape 

 The ith ‘ed symbol indicates the current position of 

the ith tape head 

 (p. 177) Fig. 3.14 diagrams 3-tape example 

 To simulate with S a single transition of M from state q 

 Sequentially try each rule from M that starts with q: 

 Move to the ith ‘ed symbol and compare to ai  

 If we find a mismatch, quit and try next rule 

 If we have match on all ais, go back to start of tape 

and go back to each ‘ed symbol in sequence 

 Replace by bi  

 Move simulated tape head i by moving L, R, or S, 

and replace that symbol by its ‘ed version 

 On a move R where we hit a # 

 1st move entire rest of string right one position 

 Then write a blank  
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 B: Bidirectional Infinite Tape  

 Tape goes on forever in both directions, not just right 

 First emulate on a 2-tape TM 

 Tape 1 is the right hand side of the double sided tape 

 Tape 2 is the left handed side of the double sided tape 

 Have a special # on start of both sides of tape 

 Two sets of states from B:  

 one where we are on right hand side of B’s tape  

 other where we are on left hand side of B’s tape 

 If in a right-side of tape state and move L, add 

additional states to check if new cell is cell 0 

 This is case where B has crossed the center of its 

tape, moving left 

 If so, switch to correct state on 2nd tape 

 And whenever original state says move left, new 

transition says more right, and vice versa 

 If on 2nd tape, and move right into a cell with a # 

 I.E. have crossed the center of the original tape and 

moving right 

 Move left to cell 0, switch to equivalent state that 

uses 1st tape 

 Then emulate 2-tape machine on a basic TM 
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 S: TM with a Stack 

 δ:QxΓ1x Γ2 -> Qx Γ1’x Γ2’ x {L, R} 

 Γ2: tape characters 

 Γ1: stack characters 

 Having a stack is useful to simplify programming by 

supporting subroutines and recursive operations 

 Solution: Simulate on a 2-tape machine 

 One tape is original tape 

 2nd tape is stack 

 Γ1’ and Γ2’ include duplicates of Γ1 and Γ2 i.e. a and a’ 

where ‘ed symbols represent “top of stack’ 

 Any push or pop to stack causes switch to states that 

modify just stack 

 Then emulate 2-tape on single tape 
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 (p. 178) NTM: NonDeterministic TMs  

 δ:QxΓ -> P( QxΓx {L, R,} ) 

 Each (q,a) can lead to one of a set of transitions 

 There are multiple choices for each state & tape symbol 

 If any of these choices lead to an accept state, then TM 

accepts its input 

 (p. 179) Theorem 3.16: Every nondeterministic TM N has 

equivalent deterministic TM D   

 Solution: have D work thru each possible variation in 

N’s transitions sequentially 

 In a breadth-first exploration of tree of choices 

 Each node in tree is a configuration of N 

 Root node is initial configuration 

 Explore all possible set of choices at level k before 

trying any choices at level k+1 

 If any choice leads to qaccept, accept 

 If all choices lead to qreject, reject 

 Looping is still possible  
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 D has 3 tapes (see Fig. 3.17 on page 179) 

 Tape 1: Input tape – never changed 

 Tape 2: Simulation tape: copy of N’s tape having 

made one set of choices 

 Tape 3: Keeps track of which node in tree Tape 2 

represents 

 Let b = size of largest set of possible choices from 

one transition 

 Γ3 = {1, …b} 

 Eg. 431 on tape 3 means tape 2 represents 

 Having made 4nd choice at root, 

 Having made 3rd choice from above 

 Having made 1st choice from above 

 Computation as follows: 

 Copy tape 1 to 2 

 Initialize tape 3 to ε 

 Use Tape 2 to simulate one branch of N’s tree 

 Before each step of N, consult next symbol on 

tape 3 to determine which choice to make 

 If accepting configuration found, enter accept 

state 
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 Replace string on tape 3 with next string in tree 

ordering and restart if any of following 

 No more symbols on tape 3 

 Simulation ended up “invalid” 

 Choice on tape is invalid 

 D clearly computes anything N does but with 3 tapes 

 But a 3-tape TM can be simulated by a 1 tape TM 

 SLOWLY!!! 

 Thus N can be simulated by a basic 1-Tape TM! 

 (p. 180) Corollary 3.18. A language is Turing-

recognizable if some NTM recognizes it 

 Proof: all NTMs can be converted into a TM 

 A NTM is a Decider if all branches halt 

 In proof of Theorem 3.16 we can modify simulation of N 

so that if N always halts then so does D. 

 Thus Corollary 3.19: L is decidable iff some NTM decides it 
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 (p. 180) An Enumerator of a language L is a TM with  

 A “printer” where each rule can also output a symbol 

 An initial blank “work tape” 

 A set of rules that uses work tape to generate all 

possible strings from a language  

 And write each string to the printer 

 (p. 181) Theorem 3.21 A language L is Turing-

recognizable iff some enumerator can enumerate it. 

 If: assume TM E enumerates L , following TM M accepts it 

 Given a string w, M runs E from start 

 For each string that is output, compare it to w 

 If ever a match, accept it 

 All (and only) w’s from L will be accepted! 

 Only if: Assume TM M accepts L, construct E as follows: 

 Build an enumerator E’ for all strings in ∑* 

 Do the following for i=1, 2, …. 

 Run E’ to generate next string 

 For each output from E’ run M for exactly i steps 

 Guarantees we will stop 

 If accepted, print out string from E’ 

 Equivalent logically to running parallel set of Ms, each 

running on a different string from ∑* 
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 Summary of all this 
 No computer can compute anything that basic TM cannot 

 With caveat of enough memory 

 Thus all computers compute exactly the same class of 

algorithms 

 Any reasonable programming language can be used to 

write a TM emulator 

 Thus any reasonable programming language can be 

compiled into any other reasonable language 

 Thus all programming languages describe exactly the 

same class of algorithms 


