pp. 165-175. *Turing Machines* (Sec. 3.1)

- (p. 166) Difference from DFA and PDA
 - 1-sided infinite **Tape** instead of (infinite) stack
 - One symbol fits in a cell
 - Initially input string starts on left edge and extends right
 - 1st **blank □** to right of tape marks end of input string
 - Tape cells to right of 1st □ go on forever with more □s
 - Any tape cell can be modified
 - **Tape head** initially on leftmost symbol on tape
 - Can move head left or right one cell
 - **Accept** and **reject** signaled by entering designated states
- (p. 167) Sample TM for \(\{w#w \mid w \in \{0,1\}^*\} \) (non-CFL)

- Formal Definition: \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \)
 - **Q** = set of states
 - \(\Sigma = \text{input alphabet} \), not including □
 - Characters that make up tape at start
 - \(\Gamma = \text{tape alphabet} \), symbols that can be on tape cell
 - □ in \(\Gamma \), \(\Sigma \) subset of \(\Gamma \)
 - Characters that can be written to tape
 - \(\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\} \)
 - Where L & R signal which direction to move tape
 - \(q_0 = \text{start state}; q_{\text{accept}} \text{ is accept state}; q_{\text{reject}} \text{ is reject state} \)
• **Computation:**
 • Input string \(w = w_1, w_2, \ldots w_n \) on left of tape, followed by □s
 • Tape head starts at leftmost cell (i.e. where \(w_1 \) is)
 • Computation step
 • Reads cell under head
 • Combine with current state to determine which transition rule applies (note no \(\varepsilon \)s!)
 • Set state to new value from transition rule
 • Write symbol from rule to cell
 • Move tape head either left or right as specified
 • Cannot move beyond leftmost cell
 • Repeat until accept or reject
 • Possible for machine to loop forever

• **Configuration:**
 • Current state, tape contents, head location
 • Written as \(u \ q \ v \)
 • \(q \) is current state
 • Current tape holds string \(uv \)
 • Tape head is over *leftmost symbol in string* \(v \)
 • Start configuration: \(q_0 \ w \) (\(u \) is empty string)
 • (p.169) Fig. 3.4 Example configuration
 • TM that accepts in in Fig. 3.10 p. 173 (discussed later)
• (p. 169) Configuration C1 \textbf{yields} C2 if M can legally go from C1 to C2 in 1 step
 • if $\delta(q_i, b) = (q_j, c, L)$ then $ua \ q_i \ bv$ yields $u \ q_j \ acv$
 • If tape head at left end ($ua = \varepsilon$), then $q_i \ bv$ yields $q_j \ cv$
 • $\delta(q_i, b) = (q_j, c, R)$ then $ua \ q_i \ bv$ yields $uac \ q_j \ v$
 • If tape head at current rightmost end ($b = \square$),
 • then $ua \ q_i \ \square$ yields $uac \ q_j \ \square$
 • Note former blank now occupied
 • \textbf{Accepting configuration} $u \ q_{\text{accept}} \ v$
 • \textbf{Rejecting configuration} $u \ q_{\text{reject}} \ v$
 • Accepting and Rejecting configurations called \textbf{halting configurations} because no further configurations possible

• (p.170) M \textbf{accepts} w if
 • A sequence C1, C2, ... Ck exists
 • C1 = start configuration $q_0 \ w$
 • Each C_i yields C_{i+1}
 • C_k is accepting configuration: $u \ q_{\text{accept}} \ v$
 • Strings u and v are arbitrary
• (p. 170) TMs and Languages
 • L(M) = set of strings accepted by TM M
 • L is **Turing-recognizable** if some TM M accepts it
 • When M started, 3 outcomes: Accept, Reject, Loops
 • M can fail to accept if it enters q_{reject} or loops
 • (p. 170) M is a **decider** is it **never loops**
 • I.E. always stops, regardless of input string
 • I.e. always ends up in either q_{accept} or q_{reject}
 • (p. 170) L is **Turing-decidable** (or simply **decidable**) if some Turing Machine decides it.

• Examples
 • (p. 171 Ex. 3.7) A = \{0^k \mid k=2^n, n \geq 0\}
 • Multiple iterations, each cuts # 0s in half
 • (p.173 Ex. 3.9) B = \{w#w \mid w \text{ in } \{0,1\}^*\}
 • (p. 174 Ex. 3.11) C = \{a^i b^j c^k \mid ixj=k, i,j,k \geq 1\}
 • (p.175 Ex. 3.12} E = \{#x_1#x_2# \ldots #x_l \mid \text{no two x’s are equal}\}
• Exercises: 3.1, 3.2