pp. 165-175. Turing Machines (Sec. 3.1)

- (p. 166) Difference from DFA and PDA
 - 1-sided infinite Tape instead of (infinite) stack
 - One symbol fits in a cell
 - Initially input string starts on left edge and extends right
 - 1st blank \square to right of tape marks end of input string
 - Tape cells to right of $1^{st} \square$ go on forever with more $\square s$
 - Any tape cell can be modified
 - Tape head initially on leftmost symbol on tape
 - Can move head left or right one cell
 - Accept and reject signaled by entering designated states
 - (p. 167) Sample TM for {w#w|w in {0,1}*} (non-CFL)
- Formal Definition: $M = (Q, \sum, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
 - Q = set of states
 - $\Sigma = input alphabet$, not including \Box
 - Characters that make up tape at start
 - Γ = tape alphabet, symbols that can be on tape cell
 - □ in Γ, ∑ subset of Γ
 - Characters that can be written to tape
 - δ: QxΓ -> QxΓx{L,R}
 - Where L & R signal which direction to move tape
 - q₀ = start state; q_{accept} is accept state; q_{reject} is reject state

• Computation:

- Input string w = $w_1, w_2, ..., w_n$ on left of tape, followed by $\Box s$
- Tape head starts at leftmost cell (i.e. where w₁ is)
- Computation step
 - Reads cell under head
 - Combine with current state to determine which transition rule applys (note no εs!)
 - Set state to new value from transition rule
 - Write symbol from rule to cell
 - Move tape head either left or right as specified
 - Cannot move beyond leftmost cell
- Repeat until accept or reject
 - Possible for machine to loop forever

• Configuration:

- Current state, tape contents, head location
- Written as u q v
 - q is current state
 - Current tape holds string uv
 - Tape head is over *leftmost symbol in string v*
- Start configuration: q₀ w (u is empty string)
- (p.169) Fig. 3.4 Example configuration
 - TM that accepts in in Fig. 3.10 p. 173 (discussed later)

- (p. 169) Configuration C1 yields C2 if M can legally go from C1 to C2 in 1 step
 - if $\delta(q_i, b) = (q_j, c, L)$ then us $q_i bv$ yields u $q_j acv$
 - If tape head at left end (ua = ε), then q_i bv yields q_j cv
 - $\delta(q_i, b) = (q_j, c, R)$ then us $q_i bv$ yields us $q_j v$
 - If tape head at current rightmost end (b = □),
 - then ua $q_i \square$ yields uac $q_j \square$
 - Note former blank now occupied
 - Accepting configuration u q_{accept} v
 - Rejecting configuration u q_{reject} v
 - Accepting and Rejecting configurations called halting configurations because no further configurations possible
- (p.170) M accepts w if
 - A sequence C1, C2, ... Ck exists
 - C1 = start configuration q₀ w
 - Each C_i yields C_{i+1}
 - C_k is accepting configuration: $u q_{accept} v$
 - Strings u and v are arbitrary

- (p. 170) TMs and Languages
 - L(M) = set of strings accepted by TM M
 - L is Turing-recognizable if some TM M accepts it
 - When M started, 3 outcomes: Accept, Reject, Loops
 - M can fail to accept if it enters q_{reject} or loops
 - (p. 170) M is a **decider** is it <u>never loops</u>
 - I.E. <u>always stops</u>, regardless of input string
 - I.e. always ends up in either q_{accept} or q_{reject}
 - (p. 170) L is **Turing-decidable** (or simply **decidable**) if some Turing Machine decides it.
- Examples
 - (p. 171 Ex. 3.7) $A = (0^k | k=2^n, n \ge 0)$
 - Multiple iterations, each cuts # 0s in half
 - (p.173 Ex. 3.9) B = {w#w | w in {0,1}*}
 - (p. 174 Ex. 3.11) C = $\{a^i b^j c^k | ixj=k, i,j,k \ge 1\}$
 - (p.175 Ex. 3.12) E = {#x₁#x₂# ...#x₁ | no two x's are equal}
- Exercises: 3.1, 3.2