
1

Topics for Exam 2
 Open books and notes but no electronic aids

 Pages are for Version 3

 #s in “()” refer to homework problems; [] = Exercises

 Chap. 2.1 Context Free Grammars (p.102)
 [2.3] Understand the parts of a CFG

 [2.4, 2.6, 2.9, 2.28] (5.1, 5.2, 5.4) Create formal description of a CFG from language
description (p.104)

 Describe a language given a CFG

 [2.1] (5.5a) Given a CFG and a string: show a parse tree and/or a derivation

 Know different kinds of derivations (esp. left-most)

 (p. 107) [2.8,2.27, 2.29] Understand ambiguous grammars

 Know/use/prove rules about combinations of CFLs , esp. via either PDA or CFG

 [2.16] (5.3)Closed under U, Concat, *

 [2.2] () Not closed under ∩, complement

 [2.18a] () CFL ∩ RE = CFL

 [2.23,24] Also () Show two set descriptions of a CFL are equal

 Chap. 2.2 Push Down Automata (p.111)
 Understand formal definition of PDA (p. 111)

 Understand role of εs in transition rules (p. 114)

 [2.5] (5.1, 5.4) Create formal description of a PDA from a language description

 [2.11] (5.1, 5.4, 5.5b) Create formal description of a PDA from a CFG (pp. 119-120)

 Given a PDA description and a string, show a derivation sequence

 [2.12] (5.6) Given a PDA, construct CFG (Lemma 2.27) (p. 122)

 Chap. 2.3 Non CFG Languages (p.125)
 (5.5c) Be able to show how a string that is known to be in a CFL partitions into

substrings so that when pumped, strings are still in L

 [2.34] Be able to estimate pumping length

 from parameters of a CFG (p127)

 (6.3) by looking at actual strings

 [2.30-33] Apply CFL pumping lemma to show a language is not CFL (p.126)

 (6.1, 6.2, 6.8) When language is a mix of terminals

 (6.7) When language has only 1 terminal

 Chap. 3.1. Turing Machines (p. 165)
 Understand formal definition of TM (p. 168)

2

 [3.5] Understand what a TM can and cannot do at each step

 [3.1,2] Be able to specify configurations a TM goes thru during its computation,
esp. accepting and rejecting (p. 1698)

 Understand differences between formal, implementation, hi-level (p. 185)

 [3.8] Write formal description of TM

 from language description (p. 171-174)

 (6.9) as a simulator of a FA or PDA

 [3.8] Write implementation description of TM from language description

 Understand difference between a recognizer and a decider (p. 170)

 Be able to define both an informal and a formal TM for either a decider (accept or
reject) or (6.10) a computation (e.g. add)

 Understand closure properties of languages

 [3.15](6.5) decidable languages closed under U, concat, *, ~, ∩

 [3.16] (6.6) Turing-recognizable languages closed under U, concat, *, ∩,
homomorphism

 Chap. 3.2. Variants of TMs (p. 176)
 Understand variations of TMs and what transition rules for them look like

 TM that can stay in place

 Multiple tapes (p. 177)

 [3.11] Infinite in both directions

 Nondeterministic (p. 178)

 [3.10] Write-once TM

 [3.11] Left reset TM

 [3.4, 3.6] (6.4) Understand concept of a TM enumerator (p. 180)

 Chap. 3.3. (p. 185) Terminology for describing TMs
 Formal: the complete 7 tuple

 Implementation: English prose of what happens to the tape

 High level: English prose of the algorithm, ignoring details of tape movements

