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Topics for Final 
• Open books and notes but no electronic aids 

• #s in “()” refer to homework problems; [] = Exercises 

• Issues from prior exams/homeworks 
• Exam 1: (Prob. 2) Designing a DFA for some language 

• Exam 1 (Prob. 3): Pumping lemma for regular languages 

• Exam 2: (Prob. 4): Defining a CFL from a set description; pumping lemma for CFLs 

• Exam 2 (Prob.5) : Designing a TM 

• Other difficulties (from homeworks) 

• Induction proofs 

• NFAs to/from DFA to/from regexs 

• Showing closure properties via constructions 

• Estimating pumping length 

• ε rules in PDAs and equivalence to pushes and pops 

• Special Topics: (possible subject of multiple choice questions) 
• Understand basics of combinators (S,K,I) 

• Understand general nature of Quantum Computing 

• Understand general nature of Micron Automata 

• (p. 193) Chap. 4 Decidability 
• Language = set of strings 

• Machines can be encoded as strings (e.g. machine files for projects) 

• (p. 170) Language is Turing-recognizable if some TM recognizes it 

• Always accepts if input is in language 

• Never accepts if input is not in language 

• (p. 170) [V3:4.5, 4.10, 4.12, 4.14, 4.25] Language is Turing-decidable if some TM 
decides it 

• Always accepts if input in language 

• And always rejects any input not in language – NEVER LOOPS 

• (p. 194) Acceptance problem = is some specific string in a specific language? 

• (p. 194) Decidable language: algorithm exists to always determine yes or no (no 
loop)  

• (HW7.1) Be able to describe algorithm for decision 

• (pp. 194-197) decidable languages based on DFA/NFA (i.e. regular expressions) 

• (HW7.2) (pp. 198-200) decidable languages based on PDA (i.e. Context free) 

• (p. 201)(HW7.3)  4.2: Undecidability: cannot write algorithm to decide 
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• May be recognizable or co-Turing recognizable, BUT NOT BOTH 

• First undecidable language: ATM = {<M,w>|M accepts w} 

• Proof by contradiction, Uses idea of diagonalization (do not need to 
understand details of p. 203-208 on diagonalization) 

• (pp. 220-226) Computational Histories and LBA not covered 

• (p. 209) [HW7.4] co-Turing recognizability (complement is recognizable) 

• L is decidable iff recognizable and co-Turing recognizable 

• (p. 215) Chap 5 Reducibility 
• [V3:5.5, V3:5.7] Reduction: transform any instance of Problem A into an instance 

of Problem B and use solver for B to solve instance of A 

• (p. 216) [V3:5.10 and 5.11, HW7.4, 7.6)]5.1 Undecidable problems from Language 
Theory 

• Be able to prove B is undecidable by showing reduction from a problem A 
(which is undecidable) to B 

• (p. 237) (HW7.5) Post Correspondence Problem is undecidable – understand 
problem – do not need to recreate proof 

• (p. 234) 5.3 Mapping Reducibility: mapping from A to B is via a function 
 

• (p. 275) Chap. 7 Time Complexity 
• (V3:7.1c,d V3:7.2 c,d HW7.7) Determine “Big O” time complexity of a function as 

function of size of input 

• (p. 279) TIME(t(n)) = all languages decidable by O(t(n)) TM 

• (p. 282) Every t(n) time multi-tape TM has eqvt O(t(n)2) 1-tape TM 

• (p. 283) Running time of NTM = max # of steps in any possible path 

• (p. 284) 7.2 Class P: polynomial time deciders 
• [V3:7.8 HW7.8] show by designing deterministic TM decider in time O(nk) for 

some k 

• (p. 288) PATH = {<G,s,t>| there is a path from s to t} 

• (p. 289) RELPRIME = {<x,y>|x and y are relatively prime} Uses Euclidean alg 

• (p. 290) Every CFL is in P – uses dynamic programming 

• [7.6] Show P closed under union, concatenation, complement 
 

• (p. 292) 7.3 Class NP: a NTM can produce, in poly time, a 
“certificate” which can be checked by a polynomial time verifier 
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• NTM typically generates “all possible” solutions, and passes correct one to 
verifier to check. 

• Crystal Ball” guesses answer & verifier simply has to check in poly time 

• Essentially your brute-force SAT solver 

• NTIME(t(n)) = languages decidable by NTM in O(t(n)) time 

• (HW8.1, HW8.2, HW8.3) Proof technique:  

• Show NTM can generate a “certificate” (a.k.a a guess)  in poly time 

• Show poly time NTM can verify 

• (p. 296) CLIQUE = {<G,k>|G has k vertices with edges to each other} 

• (p. 297) SUBSET-SUM = {<S,t>|some subset of S adds up to t} 

• SAT = {<wff>|wff is satisfiable} 
 

• (p. 299) 7.4 NP-Complete: Subset of NP problems into which all 
other NP problems can be mapped 

• If poly time decider exists for any problem in NP-complete, then all of NP is in P 

• (p. 304) COOK-LEVIN Theorem: SAT is in NP-Complete because we can build a 
giant wff from a NTM and its input, that is satisfiable iff NTM accepts its input 

• Do not need to understand how wff is built, only that we can 

• To add other problems B to NP-complete 

• (HW8.4, 8.5) Show poly time mapping from all instances of some A (known 
to be in NP-Complete) into an instance of B 

• Show if decision for A exists then so does decision for B, & vice versa also 

• (p.302) 3SAT is poly time reducible to CLIQUE 

• (p. 311) Additional NP-Complete problems (Understand what problems are, not 
details of proof) 

• (p. 311) CLIQUE because of mapping from 3SAT 

• (p. 312) VERTEX-COVER = {<G,k>| some set of k vertices has all edges in G 
touching them) via Map from 3SAT 

• (p. 314) HAMPATH ={<G,s,t>|G directed graph:  path from s to t touches all 
vertices once} via map from 3SAT 

• (p. 314) UHAMPATH ={<G,s,t>| G undirected} 

• (p. 320) SUBSET-SUM = {<S,t>|some subset of S adds up to t} 

• Other 

•  [7.7,7.18] (HW8.1) Show NP closed under union, complementation, star 

• (V3: 7.34) NP-Hard: from notes – simply remember all NP reduce to 
it but its not in NP 


