Topics for Final

- Open books and notes but no electronic aids
 - #s in “()” refer to homework problems; [] = Exercises
- Issues from prior exams/homeworks
 - Exam 1: (Prob. 2) Designing a DFA for some language
 - Exam 1 (Prob. 3): Pumping lemma for regular languages
 - Exam 2: (Prob. 4): Defining a CFL from a set description; pumping lemma for CFLs
 - Exam 2 (Prob.5): Designing a TM
 - Other difficulties (from homeworks)
 - Induction proofs
 - NFAs to/from DFA to/from regexs
 - Showing closure properties via constructions
 - Estimating pumping length
 - ε rules in PDAs and equivalence to pushes and pops
- Special Topics: (possible subject of multiple choice questions)
 - Understand basics of combinators (S,K,I)
 - Understand general nature of Quantum Computing
 - Understand general nature of Micron Automata
- (p. 193) Chap. 4 Decidability
 - Language = set of strings
 - Machines can be encoded as strings (e.g. machine files for projects)
 - (p. 170) Language is Turing-recognizable if some TM recognizes it
 - Always accepts if input is in language
 - Never accepts if input is not in language
 - (p. 170) [V3:4.5, 4.10, 4.12, 4.14, 4.25] Language is Turing-decidable if some TM decides it
 - Always accepts if input in language
 - And always rejects any input not in language – NEVER LOOPS
 - (p. 194) Acceptance problem = is some specific string in a specific language?
 - (p. 194) Decidable language: algorithm exists to always determine yes or no (no loop)
 - (HW7.1) Be able to describe algorithm for decision
 - (pp. 194-197) decidable languages based on DFA/NFA (i.e. regular expressions)
 - (HW7.2) (pp. 198-200) decidable languages based on PDA (i.e. Context free)
 - (p. 201)(HW7.3) 4.2: Undecidability: cannot write algorithm to decide
• May be recognizable or co-Turing recognizable, BUT NOT BOTH
• First undecidable language: \(A_{TM} = \{<M,w>| M \text{ accepts } w\}\)
 • Proof by contradiction, Uses idea of diagonalization (do not need to understand details of p. 203-208 on diagonalization)
• (pp. 220-226) Computational Histories and LBA not covered
• (p. 209) [HW7.4] co-Turing recognizability (complement is recognizable)
 • L is decidable iff recognizable and co-Turing recognizable

• (p. 215) Chap 5 Reducibility
 • [V3:5.5, V3:5.7] Reduction: transform any instance of Problem A into an instance of Problem B and use solver for B to solve instance of A
 • (p. 216) [V3:5.10 and 5.11, HW7.4, 7.6]]5.1 Undecidable problems from Language Theory
 • Be able to prove B is undecidable by showing reduction from a problem A (which is undecidable) to B
 • (p. 237) (HW7.5) Post Correspondence Problem is undecidable – understand problem – do not need to recreate proof
 • (p. 234) 5.3 Mapping Reducibility: mapping from A to B is via a function

• (p. 275) Chap. 7 Time Complexity
 • (V3:7.1c,d V3:7.2 c,d HW7.7) Determine “Big O” time complexity of a function as function of size of input
 • (p. 279) \(TIME(t(n))\) = all languages decidable by \(O(t(n))\) TM
 • (p. 282) Every \(t(n)\) time multi-tape TM has eqvt \(O(t(n)^2)\) 1-tape TM
 • (p. 283) Running time of NTM = max # of steps in any possible path

• (p. 284) 7.2 Class P: polynomial time deciders
 • [V3:7.8 HW7.8] show by designing deterministic TM decider in time \(O(n^k)\) for some \(k\)
 • (p. 288) PATH = \(\{<G,s,t>| \text{ there is a path from } s \text{ to } t\}\)
 • (p. 289) RELPRIME = \(\{<x,y>|x \text{ and } y \text{ are relatively prime}\}\) Uses Euclidean alg
 • (p. 290) Every CFL is in P – uses dynamic programming
 • [7.6] Show P closed under union, concatenation, complement

• (p. 292) 7.3 Class NP: a NTM can produce, in poly time, a “certificate” which can be checked by a polynomial time verifier
• NTM typically generates “all possible” solutions, and passes correct one to verifier to check.
• Crystal Ball” guesses answer & verifier simply has to check in poly time
 • Essentially your brute-force SAT solver
• \(\text{NTIME}(t(n)) \) = languages decidable by NTM in \(O(t(n)) \) time
• (HW8.1, HW8.2, HW8.3) Proof technique:
 • Show NTM can generate a “certificate” (a.k.a a guess) in poly time
 • Show poly time NTM can verify
• (p. 296) CLIQUE = \{<G,k>|G has k vertices with edges to each other\}
• (p. 297) SUBSET-SUM = \{<S,t>|some subset of S adds up to t\}
• SAT = \{<wff>|wff is satisfiable\}

• (p. 299) 7.4 NP-Complete: Subset of NP problems into which all other NP problems can be mapped
 • If poly time decider exists for any problem in NP-complete, then all of NP is in P
 • (p. 304) COOK-LEVIN Theorem: SAT is in NP-Complete because we can build a giant wff from a NTM and its input, that is satisfiable iff NTM accepts its input
 • Do not need to understand how wff is built, only that we can
 • To add other problems B to NP-complete
 • (HW8.4, 8.5) Show poly time mapping from all instances of some A (known to be in NP-Complete) into an instance of B
 • Show if decision for A exists then so does decision for B, & vice versa also
 • (p.302) 3SAT is poly time reducible to CLIQUE
• (p. 311) Additional NP-Complete problems (Understand what problems are, not details of proof)
 • (p. 311) CLIQUE because of mapping from 3SAT
 • (p. 312) VERTEX-COVER = \{<G,k>| some set of k vertices has all edges in G touching them\} via Map from 3SAT
 • (p. 314) HAMPATH =\{<G,s,t>|G directed graph: path from s to t touches all vertices once\} via map from 3SAT
 • (p. 314) UHAMPATH =\{<G,s,t>| G undirected\}
 • (p. 320) SUBSET-SUM = \{<S,t>|some subset of S adds up to t\}
• Other
 • [7.7,7.18] (HW8.1) Show NP closed under union, complementation, star
• (V3: 7.34) NP-Hard: from notes – simply remember all NP reduce to it but its not in NP