
1

pp. 201-210. Undecidability (Sec. 4.2)

 Remember ADFA = {<B,w>| B a DFA that accepts w}

 We proved it is decidable

 I.e. Given any <B,w> some TM can

 Decide if B accepts w, or not!

 And the TM always halts

 *Consider ATM = {<M,w>| M is a TM and M accepts w}

 If ATM is decidable, then

 we can take ANY program and ANY input,

 and determine yes/no if M accepts w in finite time

 Good for doing automatic program verification

 Question: is this possible?

 KEY: we can write a recognizer U, but not a decider

 U interprets M executing with w (i.e. your TM project)

 If M stops, U stops

 Thus if M accepts w, so does U

 This section: prove we cannot write a TM decider

 Cannot write a TM U that always stops with correct

answer when M does not halt

2

 (p. 202)* Theorem 4.11 ATM is undecidable

 First, simpler version of proof than book’s

 ASSUME a TM H exists which decides ATM

 Imagine following (large) table

 ith row for all possible machines Mi

 Ordered by “size” of <M>

 one column for each possible string w

 Ordered by length of w

 Entry (i,j) has accept or reject in it, depending on what

Mi does with string wj

 H should be able to compute this, one (M,w) entry at a

time, notionally in a “diagonal” order

w0 w1 w2 w3 …

M1 reject accept reject accept

M2 reject accept reject reject

M3 accept reject reject reject

M4 reject reject accept accept

…

3

 If H always stops with accept/reject, then can define D

 D accepts when H rejects and vice versa

 Given <Mi, wj>

 Run H on <Mi, wj>

 If H accepts, D rejects and if H rejects then D accepts

 If D is a TM, then it corresponds to some row in table

 i.e. gives accept/reject for each wj

 So H applied to <D, wj> gives what D returns

 BUT D SUPPOSED TO GIVE OPPOSITE OF WHAT H DOES

 So assumption that H exists must be false

w0 w1 w2 w3 …

M1 reject accept reject accept

M2 reject accept reject reject

D accept reject reject reject

M4 reject reject accept accept

…

4

 (p. 202) Book’s Proof Theorem 4.11 ATM is undecidable

 Definitions: Assume sets A & B, & function f:A->B

 f is one-to-one (or injective) if f(a) != f(b) when a != b.

 f is onto (or surjective) if for all b, there is an a: f(a)=b

 f is a correspondences (or bijective) if both

 Equivalent to pairing each a with exactly one b

 (p. 202) Step 1: The diagonalization method

 Discovered by Cantor in 1873 to compare infinite sets

 If there is some correspondence between 2 infinite

sets, then they are “same size”

 E.g. N = {1,2,3,4,…} E = {2,4,6,8,…} are the same size

 For any n in N, pair up with f(n) = 2n in E

 (p. 203) Set A is countable if finite or same size as N

 i.e. each element of A matchable to an integer

 Now consider Q = {m/n |m,n in N} (Rationals)

 Q seems much larger than N, but not so

 See p. 204 Fig. 4.16 for correspondence with N

 I’th row contains all rationals with i as numerator

 j’th column has all rationals with j as denominator

 Count diagonally

 Skip any i/j that reduces to an earlier #

 Q has same size as N!

5

 Uncountable if no correspondence with N

 (p. 205) Theorem 4.17: Reals R is uncountable

 Proof by contradiction

 Suppose bijective function f between N and R

 i.e. can map each integer into a real and v.v.

 Show that such an f always misses at least 1 number x

 Suppose f exists

 Then f(1) = …, f(2) = … for some numbers like pi

 Construct an x not in correspondence

 Let 1st digit of x be anything different from 1st digit

of fraction of f(1) – thus x!=f(1)

 Let 2nd digit of x be anything different from 2nd digit

of fraction of f(2) – thus x!=f(2)

 …

 Thus x is different from f(n) for any n because it

differs in nth digit!

 Thus f is not a correspondence

 (p. 206) Aside: define B = Infinite Binary Sequences:

unending sequence of 0s & 1s

 B is uncountable using similar proof as for R

6

 (p. 206) Corollary 4.18 Some languages are not Turing

Recognizable

 Proof:

 Set of all TMs is countable

 Each TM has an encoding into finite string <M>

 If we omit all illegal encodings, we get set of all TMs

 Each encoding can be converted into an integer

 Now define L = set of all languages over ∑

 |L| is infinite – but what about its size?

 Let ∑* = {s1, s2, s3, …} = set of strings; ∑ is finite

 Question: is this set countable? Yes

 Each language A in L has a unique binary sequence

from B = set of unending sequence of 1s and 0s

 ith bit is 1 if si is in A, and 0 if not

 set of bits called its characteristic sequence

 See page 206 for example

 Function f:L->B where f(A) is its characteristic

sequence & B is set of binary sequences

 Clearly one-to-one and onto

 Thus B and L are same size

 Since B is uncountable, so must L

 Which means there are more languages than TMs!

7

 (p. 207) Now re-consider ATM = {<M,w> }.

 Assume ATM is decidable by TM H

 On input <M,w>

 H halts and accepts <M,w> if M accepts w

 H halts and rejects if M fails to accept w

 Now construct TM D with input <M> as follows

 D calls H to determine what M does given its own

description <D> as its input string

 i.e. look at language {<M,<M>>}

 Whatever H does, D does the opposite

 D = “On input <M>, where M is a TM

 Run H on input <M,<M>>

 Output the opposite of what H does

 Note: <M,<M>> is like a compiler compiling itself

 Thus D(<M>)

 = accepts if M does not accept <M>

 = rejects if M accepts <M>

 Now run D on <D>:

 D(<D>) accepts if D rejects <D>!

 D(<D>) rejects if D accepts <D>!

 No matter what D does, it must do opposite.

 THUS neither D nor H can exist!

8

 See Fig. 4.19 – 4.21 for how diagonalization comes into

play

 THUS ATM is undecidable! (but it is TM recognizable)

 *Define L is co-Turing-recognizable if it is complement

of a Turing-recognizable language

 (p. 209)* Theorem 4.22. A is decidable iff it is both

Turing recognizable and co-Turing recognizable.

 =>: if A is decidable then clearly it is both recognizable and

co-recognizable

 <=: Construct M from M1 for recognizer and M2 for co-

recognizer. Then

 Run machines in parallel on same input

 If M1 accepts, accept; if M2 accepts, reject

 Every string is either in A or not(A)

 Thus one machine halts

 Thus M is a decider, and thus A is decidable

 (p. 210) Corollary 4.23 not(ATM) is not Turing

recognizable

 If it were then ATM would be decidable

 But ATM is not decidable

 Then not(ATM) cannot be recognizable

