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pp. 201-210. Undecidability (Sec. 4.2) 

 Remember ADFA = {<B,w>| B a DFA that accepts w} 

 We proved it is decidable 

 I.e. Given any <B,w> some TM can 

 Decide if B accepts w, or not! 

 And the TM always halts 

 *Consider ATM = {<M,w>| M is a TM and M accepts w} 

 If ATM is decidable, then  

 we can take ANY program and ANY input,  

 and determine yes/no if M accepts w in finite time 

 Good for doing automatic program verification 

 Question: is this possible? 

 KEY: we can write a recognizer U, but not a decider  

 U interprets M executing with w (i.e. your TM project) 

 If M stops, U stops 

 Thus if M accepts w, so does U 

 This section: prove we cannot write a TM decider 

 Cannot write a TM U that always stops with correct 

answer when M does not halt 
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 (p. 202)* Theorem 4.11 ATM is undecidable 

 First, simpler version of proof than book’s 

 ASSUME a TM H exists which decides ATM  

 Imagine following (large) table  

 ith row for all possible machines Mi  

 Ordered by “size” of <M> 

 one column for each possible string w 

 Ordered by length of w 

 Entry (i,j) has accept or reject in it, depending on what 

Mi does with string wj  

 

 H should be able to compute this, one (M,w) entry at a 

time, notionally in a “diagonal” order 

  

w0 w1 w2 w3 …

M1 reject accept reject accept

M2 reject accept reject reject

M3 accept reject reject reject

M4 reject reject accept accept

…
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 If H always stops with accept/reject, then can define D 

 D accepts when H rejects and vice versa 

 Given <Mi, wj> 

 Run H on <Mi, wj> 

 If H accepts, D rejects and if H rejects then D accepts 

 If D is a TM, then it corresponds to some row in table 

 i.e. gives accept/reject for each wj  

 So H applied to <D, wj> gives what D returns 

 BUT D SUPPOSED TO GIVE OPPOSITE OF WHAT H DOES 

 So assumption that H exists must be false 

 

  

w0 w1 w2 w3 …

M1 reject accept reject accept

M2 reject accept reject reject

D accept reject reject reject

M4 reject reject accept accept

…
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 (p. 202) Book’s Proof Theorem 4.11 ATM is undecidable 

 Definitions: Assume sets A  & B, & function f:A->B 

 f is one-to-one (or injective) if f(a) != f(b) when a != b. 

 f is onto (or surjective) if for all b, there is an a: f(a)=b 

 f is a correspondences (or bijective) if both 

 Equivalent to pairing each a with exactly one b 

 (p. 202) Step 1: The diagonalization method 

 Discovered by Cantor in 1873 to compare infinite sets 

 If there is some correspondence between 2 infinite 

sets, then they are “same size” 

 E.g. N = {1,2,3,4,…} E = {2,4,6,8,…} are the same size 

 For any n in N, pair up with f(n) = 2n in E 

 (p. 203) Set A is countable if finite or same size as N 

 i.e. each element of A matchable to an integer 

 Now consider Q = {m/n |m,n in N} (Rationals) 

 Q seems much larger than N, but not so 

 See p. 204 Fig. 4.16 for correspondence with N 

 I’th row contains all rationals with i as numerator 

 j’th column has all rationals with j as denominator 

 Count diagonally 

 Skip any i/j that reduces to an earlier # 

 Q has same size as N! 
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 Uncountable if no correspondence with N 

 (p. 205) Theorem 4.17: Reals R is uncountable  

 Proof by contradiction 

 Suppose bijective function f between N and R 

 i.e. can map each integer into a real and v.v. 

 Show that such an f always misses at least 1 number x 

 Suppose f exists 

 Then f(1) = …, f(2) = … for some numbers like pi 

 Construct an x not in correspondence 

 Let 1st digit of x be anything different from 1st digit 

of fraction of f(1) – thus x!=f(1) 

 Let 2nd digit of x be anything different from 2nd digit 

of fraction of f(2) – thus x!=f(2) 

 … 

 Thus x is different from f(n) for any n because it 

differs in nth digit! 

 Thus f is not a correspondence 

 (p. 206) Aside: define B = Infinite Binary Sequences: 

unending sequence of 0s & 1s 

 B is uncountable using similar proof as for R 
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 (p. 206) Corollary 4.18 Some languages are not Turing 

Recognizable  

 Proof:  

 Set of all TMs is countable 

 Each TM has an encoding into finite string <M> 

 If we omit all illegal encodings, we get set of all TMs 

 Each encoding can be converted into an integer 

 Now define L = set of all languages over ∑ 

 |L| is infinite – but what about its size? 

 Let ∑* = {s1, s2, s3, …} = set of strings; ∑ is finite 

 Question: is this set countable? Yes   

 Each language A in L has a unique binary sequence 

from B = set of unending sequence of 1s and 0s 

 ith bit is 1 if si is in A, and 0 if not 

 set of bits called its characteristic sequence  

 See page 206 for example 

 Function f:L->B where f(A) is its characteristic 

sequence & B is set of binary sequences 

 Clearly one-to-one and onto 

 Thus B and L are same size 

 Since B is uncountable, so must L 

 Which means there are more languages than TMs! 
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 (p. 207) Now re-consider ATM = {<M,w> }.  

 Assume ATM is decidable by TM H 

 On input <M,w> 

 H halts and accepts <M,w> if M accepts w 

 H halts and rejects if M fails to accept w 

 Now construct TM D with input <M> as follows 

 D calls H to determine what M does given its own 

description <D> as its input string 

 i.e. look at language {<M,<M>>} 

 Whatever H does, D does the opposite 

 D = “On input <M>, where M is a TM 

 Run H on input <M,<M>> 

 Output the opposite of what H does 

 Note: <M,<M>> is like a compiler compiling itself 

 Thus D(<M>)  

 = accepts if M does not accept <M> 

 = rejects if M accepts <M> 

 Now run D on <D>: 

 D(<D>) accepts if D rejects <D>! 

 D(<D>) rejects if D accepts <D>! 

 No matter what D does, it must do opposite.  

 THUS neither D nor H can exist! 
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 See Fig. 4.19 – 4.21 for how diagonalization comes into 

play 

 THUS ATM is undecidable! (but it is TM recognizable) 

 *Define L is co-Turing-recognizable if it is complement 

of a Turing-recognizable language 

 (p. 209)* Theorem 4.22. A is decidable iff it is both 

Turing recognizable and co-Turing recognizable. 

 =>: if A is decidable then clearly it is both recognizable and 

co-recognizable 

 <=: Construct M from M1 for recognizer and M2 for co-

recognizer. Then 

 Run machines in parallel on same input 

 If M1 accepts, accept; if M2 accepts, reject 

 Every string is either in A or not(A) 

 Thus one machine halts 

 Thus M is a decider, and thus A is decidable 

 (p. 210) Corollary 4.23 not(ATM) is not Turing 

recognizable 

 If it were then ATM would be decidable 

 But ATM is not decidable 

 Then not(ATM) cannot be recognizable 


