pp. 201-210. **Undecidability** (Sec. 4.2)

- Remember $A_{\text{DFA}} = \{<B,w>| B \text{ a DFA that accepts } w\}$
 - We proved it is decidable
 - I.e. Given any $<B,w>$ some TM can
 - Decide if B accepts w, or not!
 - And the TM always halts
- *Consider $A_{\text{TM}} = \{<M,w>| M \text{ is a TM and } M \text{ accepts } w\}$
 - If A_{TM} is decidable, then
 - we can take ANY program and ANY input,
 - and determine yes/no if M accepts w in finite time
 - Good for doing automatic program verification
- Question: is this possible?
- **KEY**: we can write a recognizer U, but not a decider
 - U interprets M executing with w (i.e. your TM project)
 - If M stops, U stops
 - Thus if M accepts w, so does U
- This section: prove we cannot write a TM decider
 - Cannot write a TM U that always stops with correct answer when M does not halt
• (p. 202)* **Theorem 4.11** A_{TM} is undecidable
 • First, simpler version of proof than book’s
 • **ASSUME a TM H exists which decides A_{TM}**
 • Imagine following (large) table
 • ith row for all possible machines M_i
 • Ordered by “size” of $<M>$
 • one column for each possible string w
 • Ordered by length of w
 • Entry (i,j) has accept or reject in it, depending on what M_i does with string w_j

	w0	w1	w2	w3	...
M1	reject	accept	reject	accept	
M2	reject	accept	reject	reject	
M3	accept	reject	reject	reject	
M4	reject	reject	accept	accept	
...					

• H should be able to compute this, one (M,w) entry at a time, notionally in a “diagonal” order
• If H always stops with accept/reject, then can define D
 • D accepts when H rejects and vice versa
 • Given <M_i, w_j>
 • Run H on <M_i, w_j>
 • If H accepts, D rejects and if H rejects then D accepts
 • If D is a TM, then it corresponds to some row in table
 • i.e. gives accept/reject for each w_j
 • So H applied to <D, w_j> gives what D returns
 • **BUT D SUPPOSED TO GIVE OPPOSITE OF WHAT H DOES**
 • So assumption that H exists must be false

<table>
<thead>
<tr>
<th></th>
<th>w0</th>
<th>w1</th>
<th>w2</th>
<th>w3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• (p. 202) Book’s Proof **Theorem 4.11** \(A_{TM} \) is undecidable
• Definitions: Assume sets \(A \) & \(B \), & function \(f:A\rightarrow B \)
 • \(f \) is **one-to-one (or injective)** if \(f(a) \neq f(b) \) when \(a \neq b \).
 • \(f \) is **onto (or surjective)** if for all \(b \), there is an \(a \): \(f(a)=b \)
 • \(f \) is a **correspondences (or bijective)** if both
 • Equivalent to pairing each \(a \) with exactly one \(b \)
 • (p. 202) Step 1: **The diagonalization method**
 • Discovered by Cantor in 1873 to compare infinite sets
 • If there is some correspondence between 2 infinite sets, then they are “same size”
 • E.g. \(N = \{1,2,3,4,\ldots\} \) \(E = \{2,4,6,8,\ldots\} \) are the same size
 • For any \(n \) in \(N \), pair up with \(f(n) = 2n \) in \(E \)
 • (p. 203) Set \(A \) is **countable** if finite or same size as \(N \)
 • i.e. each element of \(A \) matchable to an integer
 • Now consider \(Q = \{m/n \mid m,n \text{ in } N\} \) (**Rationals**)
 • \(Q \) seems much larger than \(N \), but **not so**
 • See p. 204 Fig. 4.16 for correspondence with \(N \)
 • \(i \)’th row contains all rationals with \(i \) as numerator
 • \(j \)’th column has all rationals with \(j \) as denominator
 • Count diagonally
 • Skip any \(i/j \) that reduces to an earlier #
 • \(Q \) has same size as \(N \)!
• **Uncountable** if no correspondence with \(N \)

• (p. 205) **Theorem 4.17: Reals \(R \) is uncountable**

 • Proof by contradiction

 • Suppose bijective function \(f \) between \(N \) and \(R \)

 • i.e. can map each integer into a real and v.v.

 • Show that such an \(f \) always misses at least 1 number \(x \)

 • Suppose \(f \) exists

 • Then \(f(1) = \ldots, f(2) = \ldots \) for some numbers like \(\pi \)

 • Construct an \(x \) not in correspondence

 • Let 1\(^{st}\) digit of \(x \) be anything different from 1\(^{st}\) digit of fraction of \(f(1) \) – thus \(x \neq f(1) \)

 • Let 2\(^{nd}\) digit of \(x \) be anything different from 2\(^{nd}\) digit of fraction of \(f(2) \) – thus \(x \neq f(2) \)

 • ...

 • Thus \(x \) is different from \(f(n) \) for any \(n \) because it differs in nth digit!

 • Thus \(f \) is not a correspondence

• (p. 206) **Aside: define** \(B = \text{Infinite Binary Sequences: unending} \) sequence of 0s & 1s

 • \(B \) is uncountable using similar proof as for \(R \)
• (p. 206) Corollary 4.18 **Some languages are not Turing Recognizable**

• Proof:
 • **Set of all TMs is countable**
 • Each TM has an encoding into finite string $<M>$
 • If we omit all illegal encodings, we get set of all TMs
 • Each encoding can be converted into an integer
 • Now define $L =$ set of all languages over \sum
 • $|L|$ is infinite – but what about its size?
 • Let $\sum^* = \{s_1, s_2, s_3, \ldots\}$ = set of strings; \sum is finite
 • Question: Is this set countable? Yes
 • Each language A in L has a unique **binary sequence**
 from $B =$ set of unending sequence of 1s and 0s
 • ith bit is 1 if s_i is in A, and 0 if not
 • set of bits called its **characteristic sequence**
 • See page 206 for example
 • Function $f:L \rightarrow B$ where $f(A)$ is its characteristic
 sequence & B is set of binary sequences
 • Clearly one-to-one and onto
 • Thus B and L are same size
 • Since B is uncountable, so must L
 • **Which means there are more languages than TMs!**
(p. 207) Now re-consider $A_{TM} = \{<M,w>\}$.

- Assume A_{TM} is decidable by TM H
- On input $<M,w>$
 - H halts and accepts $<M,w>$ if M accepts w
 - H halts and rejects if M fails to accept w
- Now construct TM D with input $<M>$ as follows
 - D calls H to determine what M does given its own description $<D>$ as its input string
 - i.e. look at language $\{<M,<M>>\}$
 - Whatever H does, D does the opposite
 - $D = \text{“On input } <M>, \text{ where } M \text{ is a TM}$
 - Run H on input $<M,<M>>$
 - Output the opposite of what H does
- Note: $<M,<M>>$ is like a compiler compiling itself
- Thus $D(<M>)$
 - $= \text{accepts if } M \text{ does not accept } <M>$
 - $= \text{rejects if } M \text{ accepts } <M>$
- Now run D on $<D>$:
 - $D(<D>)$ accepts if D rejects $<D>!$
 - $D(<D>)$ rejects if D accepts $<D>!$
- No matter what D does, it must do opposite.
- **THUS neither D nor H can exist!**
• See Fig. 4.19 – 4.21 for how diagonalization comes into play
• THUS A_{TM} is undecidable! (but it is TM recognizable)
• *Define L is co-Turing-recognizable if it is complement of a Turing-recognizable language
• (p. 209)* Theorem 4.22. A is decidable iff it is both Turing recognizable and co-Turing recognizable.
 • \Rightarrow: if A is decidable then clearly it is both recognizable and co-recognizable
 • \Leftarrow: Construct M from M_1 for recognizer and M_2 for co-recognizer. Then
 • Run machines in parallel on same input
 • If M_1 accepts, accept; if M_2 accepts, reject
 • Every string is either in A or not(A)
 • Thus one machine halts
 • Thus M is a decider, and thus A is decidable
• (p. 210) Corollary 4.23 not(A_{TM}) is not Turing recognizable
 • If it were then A_{TM} would be decidable
 • But A_{TM} is not decidable
 • Then not(A_{TM}) cannot be recognizable