CSE 34151 Theory of Computing: Homework 3
Regexes and DFA /NFAs

Version 1: Feb. 6, 2018

Instructions

Unless otherwise specified, all problems from “the book” are from Version 3. When a problem in the
International Edition is different from Version 3, the problem will be listed as V3:x.yy/IE:x.zz, where
x.zz is the equivalent number. When Version 2 is different, it will be listed as V3:x.yy/V2:x.zz. If either
IE or V2 do not have a matching number, the problem text will be duplicated.
You can prepare your solutions however you like (handwriting, I¥TEX, etc.), but you must submit them
in legible PDF. You can scan written solutions on the printer in the back of the classroom, or using
a smartphone (with a scanner app like CamScanner). It is up to you to ensure that submissions are
legible. REMEMBER THAT IF WE CAN”T READ IT OR SCAN IS CUT OFF, YOU DON”T GET
A GRADE FOR IT.
The problems marked as “TEAM” may be solved in a collaborative fashion with up to 2 other students.
In such cases, your submission should have the word “TEAM” at the start of the problem, followed
by the names of your collaborators (must be other students in this class). When such problems are
graded, the first submission encountered by the grader for the team will be used for a common grade
for all identified team members.
Please give every PDF file a unique filename.

— If you're making a complete submission (all problems), name your PDF file netid-hw#.pdf, where

netid is replaced with your NetID and # is the homework number.

— If you’re submitting some problems now and other problems later, name your file netid-hw-1-2-3.pdf,

where 1-2-3 is replaced with just the problems you are submitting now. This may be useful for
team submissions.
— If you use the same filename twice, only the most recent version will be graded.
— The time of submission is the time the most recent file was uploaded.
If you use BTEX and want to draw something like a state diagram, consider using the tikz package.
A reference document is on the website under “Assignments”.
You may also find the website http://madebyevan.com/fsm/ a useful tool for drawing state diagrams
via drop and drag. It will output both .png image files and latex in the tikz format.
Submit your PDF file in Sakai to the appropriate directory. Don’t forget to click the Submit (or
Resubmit) button!

Practice Problems

These problems are from the book, and most have solutions listed for them. They are listed here for you to
practice on as needed and any answers you generate should not be submitted. You are free to discuss these
with others, but you are not allowed to post solutions to any public forum.

1. 1.10 Regex to NFA

2. 1.20 Regex to strings

3. 1.21a DFA to regex

4. 1.28 regex to NFA

CSE 34151 Spring 2018

9.
6.

1.29a,c Pumping Lemma
1.40a CLosure

Book Exercises

These problems are found in the text book and are to be answered and submitted by each student. If they
are not marked as “TEAM,” you are to solve them individually. If they are marked as “TEAM”
you may submit the same answer as the others in your team. In any case, use of solution manuals from
any source or shared solutions is a violation of the ND Honor Code. You are also not allowed to show your
solutions to another student not part of your TEAM.

1.

@

(5pt) 1.12 Language to DFA and regular expression

Solution: We are given the language:

D = {w | w contains an even number of a’s and an odd number of b’s and does not contain the string
ab}. We are asked to give a DFA with 5 states that recognizes D and a regular expression that generates
D. Right away we can note that we will never be able to have an ’a’ followed by a 'b’ because the
substring ’ab’ will never be accepted. Using the formal definition of a DFA:

(Q7 Zv 57 q0, F)

We can make the following DFA: Q = {¢q1,92,¢3,q4,95} X ={a,b} qo =q1 F ={qs} 6 =

state | a | b
q1 q5 | 92
q2 q3 | ©1
q3 g4 | G5
q4 q3 | g5
ds qs | 95

Based on this DFA, we can make the regex: b(bb)*(aa)*

(TEAM-5pt) Book 1.19a. Regex to NFA

(5pt) Book 1-19b. Regex to NFA

(TEAM-5pt) V3:1-41;V2:1-41;IE:1.31 - Show Closure. Hint Remember that showing a language is
regular is equivalent to showing how to construct a DFA/NFA for any language constructed from
operator applied to a regular language.

Solution:

Assume My = (Q1,%, 01, 51, F1) accepts A and My = (Q2, X, 62, 82, F2) accepts B. We want to build M
that alternates between M; and Ms. To do this define @ = Q1xQ2x{1, 2} where the third component
says are we looking at A or B. So states are now triples.

Now 5(((]1, q2, 1)a a) = (5(Q1, a)v q2, 2)

and 5((q1a q2, 2), a’) = (q17 5((12’ a’)7 1)

s =(s1,82,1)

F ={(q1,q2,1)} where ¢; is in F} and g2 is in F

(10pt - Part a only is TEAM) V3:1.46a,c; V2:1-46a,c;IE:11.51a,c. Use Pumping Lemma

Solution:

Part ba. Try string 0P107. x must be 0% for some a between 0 and p — 1, and y is 0° for some b from 1
to p — b. Thus zy'z for i = 0is 0(p — b)1oP where b > 1, which is not in L. Also, you could use ¢ = 2
which yields 0(p 4 b)10P = 0P0°107, which again fails (0°1 is not a valid 1™

Part c. If a language is regular then so is its complement, and vice versa. So let’s look at {w| w is a
palindrone }. Try the string 0P10P. It does not pump.

Non-book Problems

The following problems are not found in the text book. If they are not marked as “TEAM,” you are
to solve them individually. If they are marked as “TEAM” you may submit the same answer as the

CSE 34151 Spring 2018

others in your team. Use of any resource you used other than the text book or class notes must be cited.

You are also not allowed to show your solutions to another student.

7. (TEAM - 5pt) Assume regular languages L1 and Lo are accepted by DFAs M; and Ms, where M; =

(S,%,61,81,F1), S = {s1,...,8n}, and My = (R, %, 62,71, F2)., R={r1,...,rm}. Define Ly = Ly — Ly as
{w|w is in L1 but not in Ly}. Show by construction of an NFA that Ls is regular. Describe informally
how your construction works.
Solution: We know that L; is regular so there exists a machine M; = (Q1, %1, d1,qo,, F1), and that
L is regular so there exists a machine My = (Q2, X9, 42, qo,, F2). We define M3 to be the product of
My and M; where the final states of M3 are those states in Ms, (¢;,¢;) with ¢; € Q1,¢; € Q2 s.t.
(gi,q;) € F3 if ¢; € Fy and ¢; ¢ F». What we mean by the product of two machines is that we take
@1 X Q2 to be the states of the new machine. The start state is the tuple which has both the start
state of M7 and the start state of Ms. The alphabet is simply the union of the two alphabets of the
original machine, and the delta function does element-wise transition, similar to how the NFA to DFA
construction works.
Informally, this works by simultaneously checking both machines since we have their product. When
we are done, we simply check if we are in a final state of M, paired with not a final state of Ms. If both
were accepting, we reject. If neither were accepting, we still reject. And finally, if it was only accepted
by Ms we also reject. We get precisely the strings we desire.

Remark Points
No proof by construction -1

8. (5pt) Show using the Pumping Lemma that the language L = {(ab)"(cd)™ | n > 0} is not regular.
Solution: (Ryan Mackey)

I will prove by contradiction that language L is not regular. Assume that language L is regular. Thus,
L can be represented by DFA M where M = (Q,X%, s,6, F). The amount of states in M is finite, so
assume that based on the pigeonhole principle and |Q| that the pumping length is p. Now consider a
word = € L of length greater than p. x can be written in the form z = wvw where |uv| < p and |v| > 1.
Then for Vi € Z,uv® € L, according to the definition of regular languages. But if z = (ab)?(cd)?, u and
v will both lie in the first half of the word (the ab region). Thus, with an i = 2, 2’ = (ab)®+?)(cd)P.
a’ ¢ L. This gives a contradiction and proves that language L is not regular. QED

9. (Team - 5 pt) For the following NFA compute the regular expression accepted by converting it to a
GNFA and then using the CONVERT algorithm of from Lemma 1.60 on it. Show work. Feel free to
use variables like R; to stand for intermediate expressions on an edge (with R; written out below), but
show entire final answer. You don’t need to simplify.

a,b
b a,b m a,b
- @ © ©
Figure 1: State diagram of NFA for question 6

Solution:

Any DFA/NFA can be converted to a GNFA by adding a start state ¢s and a new accepting state ¢,
and by making appropriate ¢ transitions such that g, is the only accepting state. Then, the procedure
to convert a k-state GNFA (G) to regular expression is given below.

CONVERT(G):
1. Let k£ be the number of states of G

2. If £ = 2, then G must consist of only a start state and an accepting state, with a single arrow
connecting the states labeled with regular expression R. Return R.

3. If k > 2, we select any state g,;, different from ¢, and g, and let G’ be the GNFA (Q’, %, ¢s, 0", ¢4),
where

Q/ = Q - {qTip})

CSE 34151 Spring 2018
and for any ¢; € Q" — {q,} and any ¢; € Q" — {g¢s}, let

8'(giq5) = (B1)(R2)"(Rs) U (Ra),

for Ry = 0(qi, @rip), B2 = 8(qrip, @rip); B3 = 3(qrip, ¢j), Ra = 6(gi, ¢5)-
4. Compute CONVERT(G’) and return the value.
Step 1: Starting from the given NFA N : (Q, X, qo, 9, F), where Q@ = {p,q,r, s}, ¥ = {a,b}, @0 = p, §
can be inferred from the state diagram in figure 1, F = {r, s}, we make a six-state GNFA G :
(Q',%, 0,0, F') by adding a start (¢s) and an accepting state (¢,). Therefore, Q" = {¢s,p,¢,7, 5, qa },
do = ¢s, ¢’ can be inferred from the figure 2, and F’ = {q,}. We also convert the transitions to
formal regular expressions.

Step 2: Since the G has more than 2 states, we need to remove a state g,; which is different from g,
and ¢q. Let ¢ryp = p. Thus, as per the CONVERT algorithm, we have ¢; = ¢, and ¢; = g.
R1 =06(qs,p) =€,Ry = d(p,p) =aUb,R3 = 6(p,q) = b and Ry = 6(qs,q) = 0.
Thus, §(gs,q) = (¢)(aUb)*(b) U(D) = (aUb)*(b). The state diagram of the reduced GNFA is given
in figure 3.

Step 3: Since the G has more than 2 states, we need to remove a state g;, which is different from g
and g,. Let ¢ryp = g. Thus, as per the CONVERT algorithm, we have ¢; = ¢, and ¢; = r.
Ry =6(gs,q) = (aUb)*(b), Ra = (q,q9) =¢,R3 = 6(q,7) =aUb and Ry = d(gs,7) = 0.
Thus, 6(¢s,7) = ((@Ub)*(b))(e)*(aUb) U (0) = ((a Ub)*(b))(a UDb). The state diagram of the
reduced GNFA is given in figure 4.

Step 4: Since the G has more than 2 states, we need to remove a state g;, which is different from g;
and ¢,. Let ¢.ip = s. Thus, as per the CONVERT algorithm, we have ¢; = r and ¢; = qq.
Ry =0(r,s) =(aUb),Re =6(s,8) =¢,R3 =0(8,q,) =€ and Ry = 6(r,q,) = €.
Thus, 6(r,q,) = (aUb)(e)*(e) U(e) = (aUb) Ue. The state diagram of the reduced GNFA is given
in figure 5.

Step 5: Since the G' has more than 2 states, we need to remove a state gr;, which is different from
gs and gq. Let ¢ = 7. Thus, as per the CONVERT algorithm, we have ¢; = ¢, and ¢; = ¢q.
Ry = d(gs,) = (aUb)*(b)(aUb), Ry = §(r,7) =&, R3 = (1, q,) = (aUb)Ue and Ry = 6(gs,q4) = 0.
Thus, §(¢s, ¢a) = (aUb)*(b)(aUb)(e)*((aUb)Ue)U () = (aUb)*(b)(aUb)((aUb)Ue). The state
diagram of the reduced GNFA is given in figure 6.

Step 6: Since the G has 2 states, the CONVERT algorithm terminates and returns 6(gs,q,) = (a U
b)*(b)(a Ub)((aUb)Ue) as the required regular expression.

Therefore, the required regular expression is (a Ub)*(b)(aUb)((aUb) Ue), representing the strings over
the alphabet {a,b} having a b in either the second last or the third last position.

(=

U

@D

IS

b)*(b
_)@ (GU)()@ aUb @

Figure 3: The GNFA G in step 2

CSE 34151 Spring 2018

_)@ (aUb)*(b)(aUb)
’ N\

Figure 4: The GNFA G in step 3

(aUb)*(b)(aUb) (aUD)
N U U @ Ub)Ue

Figure 5: The GNFA G in step 4

_)@ (aUb)*(b)(aUb)((aUb) Ue)

Figure 6: The final GNFA

10. (5pt) Do the same as above for the NFA in figure 7, i.e. compute the regex.
Solution:
Any DFA/NFA can be converted to a GNFA by adding a start state ¢s and a new accepting state ¢,
and by making appropriate ¢ transitions such that g, is the only accepting state. Then, the procedure
to convert a k-state GNFA (G) to regular expression is given below.
CONVERT(G):

1.
2.

Step 1:

Step 2:

Step 3:

Let k£ be the number of states of G

If £ = 2, then G must consist of only a start state and an accepting state, with a single arrow
connecting the states labeled with regular expression R. Return R.

. If k> 2, we select any state g, different from ¢, and ¢, and let G’ be the GNFA (@', %, ¢s, 0", ¢4),

where
Q/ = Q - {QT'ip}7
and for any ¢; € Q' — {q.} and any ¢; € Q' — {g,}, let
6'(gi>qj) = (R1)(R2)"(R3) U (Ra),

for Rl = 5(%7 qrip)u R2 = 6(qripa qrip)> RS = §(qrip7 QJ>7 R4 = 5(%‘» qj)

. Compute CONVERT(G’) and return the value.

Starting from the given NFA N : (Q,%,qo,d, F), where Q = {p,q,r}, ¥ = {a,b}, ¢o = p,
can be inferred from the state diagram in figure 7, F' = {r}, we make a six-state GNFA G :
(Q',%,q0,0', F') by adding a start (¢s) and an accepting state (g,). Therefore, Q" = {qs,p, ¢, 7, ¢a },
do = ¢s, &' can be inferred from the figure 8, and F’ = {q,}. We also convert the transitions to
formal regular expressions.

Since the G' has more than 2 states, we need to remove a state g,;;, which is different from ¢, and
¢a- Let gr;p = 1. Thus, as per the CONVERT algorithm, we have ¢; = {¢, p} and ¢; = ¢,.

For ¢; = q, Ry = 6(q,7) = b, Ra = 6(r,7) =0,R3 = 5(r,qs) = € and Ry = 6(q,q,) = 0.

Thus, §(q,qa) = (b)(0)*(e) U () = b.

For qi = P Rl = 5(p7 7’) = (CU€)7R2 = 6(T7 T) = 03R3 = J(Ta Qa) = ¢ and R4 = 6(]), Qa) = @
Thus, §(p,q,) = (cUe)(0)*(e) U (@) = cUe. The state diagram of the reduced GNFA is given in
figure 9.

Since the G' has more than 2 states, we need to remove a state g,;;, which is different from ¢, and
¢a- Let ¢rip = g. Thus, as per the CONVERT algorithm, we have ¢; = p and ¢; = {p, ¢o }

CSE 34151 Spring 2018

Figure 7: NFA for problem 7

For ¢; = p, R = d(p, q)

= (bUe), Ry =
Thus, §(p,p) = (bUe)(bUc

(¢,9) = (bUc), Rg = 6(q, p) = (aUc) and Ry = d(p,p) = 0.
)*(aUc)U (0)

=((BUe)(bUc)*(aUc).

For ¢j = ga, R1 = 0(p, q) = (bUe), R2 = 6(q,q) = (bUc), Ry = 6(¢;a) = b, Ra = 6(p, qa) = (cUe).
Thus, 6(p,q.) = (bUe)(bUe)*(b) U (g). The state diagram of the reduced GNFA is given in
figure 10.

Step 4: Since the G has more than 2 states, we need to remove a state g;, which is different from ¢, and
da- Let grip = p. Thus, as per the CONVERT algorithm, we have ¢; = ¢, and g; = g,. Therefore,
Ry = 6(gs,p) = &,Ra = d(p,p) = (bUe)(bUc)*(aUc),R3 = 6(p,qa) = (bUe)(bU)*(b) U (cU
€), Ry = 0(¢s,qa) = 0. Thus, 6(gs,¢a) = ()[(bUE)(bU)" (aUc)]*(bUe)(bU)*(b) U (cUe) =
[(bUe)(bUc)*(aUc)]*(bUe)(bUc)*(b) U (cUeg). The state diagram of the reduced GNFA is given
in figure 11.

Therefore, the required regular expression is [(bUe)(bUc)*(aUc)]*(bUe)(bUc)*(b) U (cUe¢)

bUc

N @ € /\‘/\A b M €

cUe

Figure 8: The GNFA G in step 1

Figure 9: The GNFA G in step 2

Reason Points
Correct small rip 1
Two medium large rips 2x2=4
Transitions not regex -0.5
Not following CONVERT -5
Not adding the dummy start and end states -0.5

Table 1: Rubric for problem 7 - Note: the errors in the GNFA propagate through the steps. They will be
penalized accordingly.

CSE 34151 Spring 2018

(bue)(bUc)*(aUc)
(

_)@ c & bUE)(bUC)*(b)U(cUS)

Figure 10: The GNFA G in step 3

_)@ [(bUue)(bUc)*(aU)]*(bUe)(bUc)*(b)U (cUe¢)

Figure 11: The GNFA G in step 4

