Algorithms

- Key distinction re TMs and languages
 - TM T **recognizes** L if for all w in L T accepts w
 - Says nothing about what if w not in L
 - TM **decides** L if
 - T recognizes L
 - If w not in L, T always halts (in reject state)

- Hilbert’s 10th problem (1900): *Can any algorithm tell if a polynomial equation has any integer roots?*
 - Sample polynomial equation: \(6x^3yz^2+3xy^2-x^3-10=0\)
 - Example does at \(x=5, y=3, z=0\)
 - Critical point: we want **yes/no** answer for any polynomial
 - 1970: no such algorithm exists

- Key starting point: what is an “algorithm”?
- Key Definition: 1936 **Church-Turing Thesis**
 - Any function over the natural \#s is computable by a algorithm iff it is computable by a TM
 - Each transition of a TM is a “**step**”
 - Step takes finite time
 - Finite \# of steps to get to accepting state
 - “**Does algorithm exist**” eqvt to **“Is there a TM decider”**
• Back to Hilbert
 • Define $D = \{p \mid p$ is a polynomial with an integral root$\}$
 • D is **recognizable**:
 • Consider $D_1 = \{p \mid p$ a polynomial over single variable x with an integral root$\}$
 • Recognizing TM M_1: Assume input string defines a p
 • Start an *enumerator* TM to generate $0, 1, -1, 2, -2, ...$
 • For each value compute p at that value
 • If a root, halt and accept
 • Note: if p has no integral roots, M_1 loops
 • TM recognizer for general D generates all cases of integers 1 at a time
 • Hilbert’s 10th problem equivalent: does some TM **decide** D
 • I.e. Does some TM **always halt** for any p
 • For D_1 (exactly 1 variable) there are bounds that can constrain solution space (see p. 184 and problem 3.21)
 • Thus we can halt M_1 as soon as we reach these bounds
 • Thus modified M_1 is a **decider** for D_1
 • Theorem from 1970: no such bounds exist for multi-variable polynomials
 • **Cannot construct a decider for D** same way as for D_1
 • When deciders exist: **do polynomial time TMs exist?**
• (p. 184) Terminology for describing TMs

• (p. 185) 3 ways for describing TMs

 • **Formal Description**: 7 tuple and δ

 • **Implementation Description**: use English prose to describe tape movements and tape writing

 • **High-level Description**: English prose to describe algorithm, ignoring implementation details

 • Often building one TM out of composition of others

• (p.185) Notation for describing TM tapes (esp. initial tapes)

 • Tape always contains a **string**

 • Use strings to represent objects (#s, grammars, graphs..)

 • TM can be written to “decode” string representations

 • Notation for string representation of object O: $<O>$

 • Notation for multiple objects $O_1,O_2,...O_k = <O_1,O_2,...O_k>$

 • TM algorithm described as indented lines of text

 • Each a **stage**: multiple TM operations

 • Assume initial stage checks format of input tape