
1

(Sec. 3.3 pp. 182-187). Algorithms

• Key distinction re TMs and languages

• TM T recognizes L if for all w in L T accepts w

• Says nothing about what if w not in L

• TM decides L if

• T recognizes L

• If w not in L, T always halts (in reject state)

• Hilbert’s 10th problem (1900): Can any algorithm tell if

a polynomial equation has any integer roots?

• Sample polynomial equation: 6x3yz2+3xy2-x3-10=0

• Example does at x=5, y=3, z=0

• Critical point: we want yes/no answer for any polynomial

• 1970: no such algorithm exists

• Key starting point: what is an “algorithm”?

• Key Definition: 1936 Church-Turing Thesis

• Any function over the natural #s is computable by a

algorithm iff it is computable by a TM

• Each transition of a TM is a “step”

• Step takes finite time

• Finite # of steps to get to accepting state

• “Does algorithm exist” eqvt to “Is there a TM decider”

2

• Back to Hilbert

• Define D = {p|p is a polynomial with an integral root}

• D is recognizable:

• Consider D1={p|p a polynomial over single variable x

with an integral root}

• Recognizing TM M1: Assume input string defines a p

• Start an enumerator TM to generate 0, 1 -1, 2, -2, …

• For each value compute p at that value

• If a root, halt and accept

• Note: if p has no integral roots, M1 loops

• TM recognizer for general D generates all cases of

integers 1 at a time

• Hilbert’s 10th problem equivalent: does some TM decide D

• I.e. Does some TM always halt for any p

• For D1 (exactly 1 variable) there are bounds that can

constrain solution space (see p. 184 and problem 3.21)

• Thus we can halt M1 as soon as we reach these bounds

• Thus modified M1 is a decider for D1

• Theorem from 1970: no such bounds exist for multi-

variable polynomials

• Cannot construct a decider for D same way as for D1

• When deciders exist: do polynomial time TMs exist?

3

• (p. 184) Terminology for describing TMs

• (p. 185) 3 ways for describing TMs

• Formal Description: 7 tuple and δ

• Implementation Description: use English prose to

describe tape movements and tape writing

• High-level Description: English prose to describe

algorithm, ignoring implementation details

• Often building one TM out of composition of others

• (p.185)Notation for describing TM tapes(esp. initial tapes)

• Tape always contains a string

• Use strings to represent objects (#s,grammars, graphs..)

• TM can be written to “decode” string representations

• Notation for string representation of object O: <O>

• Notation for multiple objects O1,O2,…Ok = <O1,O2,…Ok >

• TM algorithm described as indented lines of text

• Each a stage: multiple TM operations

• Assume initial stage checks format of input tape

