Key distinction re TMs and languages

- **TM T recognizes** L if for all w in L T accepts w
 - Says nothing about what if w not in L
- **TM decides** L if
 - T recognizes L
 - If w not in L, T always halts (in reject state)

Hilbert’s 10th problem (1900): *Can any algorithm tell if a polynomial equation has any integer roots?*

- Sample polynomial equation: $6x^3yz^2+3xy^2-x^3-10=0$
- Example does at $x=5$, $y=3$, $z=0$
- Critical point: we want *yes/no* answer for any polynomial
- 1970: no such algorithm exists

Key starting point: what is an “algorithm”?

Key Definition: 1936 **Church-Turing Thesis**

- Any function over the natural #s is computable by a algorithm iff it is computable by a TM
- Each transition of a TM is a “step”
 - Step takes finite time
 - Finite # of steps to get to accepting state

“*Does algorithm exist*” eqvt to “*Is there a TM decider*”
• Back to Hilbert
 • Define \(D = \{ p \mid p \) is a polynomial with an integral root\}
 • \(D \) is recognizable:
 • Consider \(D_1 = \{ p \mid p \) a polynomial over single variable \(x \) with an integral root\}
 • Recognizing TM \(M_1 \): Assume input string defines a \(p \)
 • Start an enumerator to generate 0, 1 -1, 2, -2, ...
 • For each value compute \(p \) at that value
 • If a root, halt and accept
 • Note: if \(p \) has no integral roots, \(M_1 \) loops
 • TM recognizer for general \(D \) generates all cases of integers 1 at a time
 • Hilbert’s 10th problem equivalent: does some TM \textbf{decide} \(D \)
 • I.e. Does some TM \textbf{always halt} for any \(p \)
 • For \(D_1 \) (exactly 1 variable) there are bounds that can constrain solution space (see p. 184 and problem 3.21)
 • Thus we can halt \(M_1 \) as soon as we reach these bounds
 • Thus modified \(M_1 \) is a \textbf{decider} for \(D_1 \)
 • Theorem from 1970: \textbf{no such bounds exist for multi-variable polynomials}
 • \textbf{Cannot construct a decider for} \(D \) \textbf{same way as for} \(D_1 \)
 • When deciders exist: \textit{do polynomial time TMs exist?}
• (p. 184) Terminology for describing TMs
• (p. 185) 3 ways for describing TMs
 • **Formal Description**: 7 tuple and \(\delta \)
 • **Implementation Description**: use English prose to describe tape movements and tape writing
 • **High-level Description**: English prose to describe algorithm, ignoring implementation details
 • Often building one TM out of composition of others
• (p.185) Notation for describing TM tapes (esp. initial tapes)
 • Tape always contains a **string**
 • Use strings to represent objects (#s, grammars, graphs..)
 • TM can be written to “decode” string representations
 • Notation for string representation of object \(O \): \(<O>\)
 • Notation for multiple objects \(O_1, O_2, \ldots, O_k = <O_1, O_2, \ldots, O_k>\)
 • TM algorithm described as indented lines of text
 • Each a **stage**: multiple TM operations
 • Assume initial stage checks format of input tape
• (p 186) **Graphs**
 • set of *vertices*, each encoded as different positive #
 • Note: book calls vertices as *nodes*
 • set of *edges* between vertices, each encoded as tuple of 2 vertices
 • edges may be **directed** (from to) or **undirected**
 • Undirected edge eqvt to pair of directed edges
 • Example of undirected graph

 ![Graph Diagram]

 \[
 G = (1, 2, 3, 4) (1, 2), (2, 3), (3, 1), (1, 4)
 \]

 • A graph is **connected** iff every vertex can be reached from every other vertex by some path of edges
• (p. 186) \(A = \{<G>| \text{ G is a connected undirected graph}\} \)
 • \(<G>\) = string of symbols representing two lists:
 • "(" list of vertex #s separated by "," ")"
 • "(" list of edges separated by "," ")"
 • Each edge: "(" <vertex 1> ",", <vertex 2> ")"

• A TM decider algorithm for testing connectedness:
 \(M = \text{"On input } <G>, \text{ the encoding of graph G:}\)
 0. Verify \(<G>\) is formatted properly & reject if not
 1. Select 1\(^{st}\) vertex of G and "mark" it
 • "Marking" adds a * ("dot") to leftmost symbol
 2. Repeat until no new vertices unmarked: For each vertex in
 G, mark it if it is attached by an edge to a vertex that is
 already marked
 1. Scan vertex list to find an unmarked vertex \(n_1\)
 • Underline 1\(^{st}\) symbol
 2. Scan vertex again and find 1\(^{st}\) dotted vertex \(n_2\)
 • Underline that also
 3. For each edge in edge list see if \((n_1, n_2)\) or \((n_2, n_1)\): If so
 • Dot the undotted vertex; Remove both underlines
 • Restart major step 2
 3. Scan all vertices of G to determine if all are "marked"
 • If yes, accept; if no reject
• Clearly this always halts on valid $\langle G \rangle$: only finitely many vertices to scan
• Also clearly polynomial time algorithm
• Equivalent to **Breadth First Search Algorithm (BFS)**
 • Basis for the **GRAPH500** benchmark
 • www.graph500.org
 • Literally thousands of different implementations on different computers, esp. parallel
 • Established by an **ND quad-domer**
• Many other important Graph Algorithms
 • Shortest path between 2 vertices
 • BFS with a count of # of edges
 • Are some vertices in a “cycle”
 • Variation of BFS
 • Traveling Salesman problem
 • Much, much harder
• See https://en.wikipedia.org/wiki/Category:Graph_algorithms
(p. 299) **SAT: Boolean Satisfiability**

SAT =\{<\text{wff}|wff a satisfiable Boolean formula}\}

- **wff** is well-formed-formula constructed from
 - V Boolean variables
 - Boolean operations AND, OR, NOT
- **Satisfiability**: is there a substitution of 0s and 1s to variables that makes the wff true
 - i.e. makes all clauses simultaneously true
- **Unsatisfiability** if no substitution makes all clauses true at same time

Clausal form:

- **wff** restructured as AND of a set of clauses
- Each **clause** an OR of a set of literals
- Each **literal** a variable or its negation

- For a wff in clausal form to be true
 - All clauses must be true
 - For any clause to be true at least one literal must be true

- Clearly there is a polynomial time verifier
 - Given list of variables and their values
 - Scan each clause, looking up value for each literal
• What is easiest approach to decidability?
 • Build truth table with a row for each possible assignment
 • But for V variables there are 2^V rows, so this is \textit{exponential}!
 • Can we ever do better?

• \textbf{1SAT} is trivially polynomial (linear)
 • Each clause is one literal
 • If any 2 clauses are a variable & its complement, then reject

• What about \textbf{2SAT}?
 • Each clause has exactly 2 literals
 • $C_i = (L_{i1} \lor L_{i2})$, L_{i1}, L_{i2} are literals from different variables
 • $(x \lor y)$ can also be written as $\neg x \Rightarrow y$, or as $\neg y \Rightarrow x$
 • If x is false then \textbf{y must be true}
 • And if y is false then \textbf{x must be true}

• Create a graph from the wff
 • 1 vertex for each possible literal
 • eqvt to 2 vertices for each variable
 • i.e. 1 for a variable, and 1 for its negation
 • For each clause, create 2 edges following the implications
• Now if some variable has an assignment
 • Start with the vertex for the matching literal which is now false
 • Follow all paths from that vertex (the BFS algorithm)
 • This is all the literals which now must be true
 • If you ever get the negation of the original literal, then a contradiction, AND NO ASSIGNMENT IS POSSIBLE
 • Equivalent to finding a cycle in the graph
• But we know that BFS is polynomial
 • And we need only apply the test for each of V variable
• So 2SAT is also polynomial
• Example: $(\neg x \lor y) \land (x \lor y) \land (x \lor \neg y) \land (\neg x \lor \neg y)$
 • 4 Clauses, 2 variables, 4 literals
 • 4 vertices: x, y, $\neg x$, $\neg y$
 • 8 matching edges:
 • (x,y), ($\neg y$, $\neg x$)
 • ($\neg x$,y), ($\neg y$,x)
 • ($\neg x$, $\neg y$), (y, x)
 • (x, $\neg y$), (y, $\neg x$)
 • Path from $\neg x$ to y to x, so this is unsatisfiable
• What about **3SAT** and above?
 • **3SAT**: all clauses have 3 literals \((L_1, L_2, L_3)\)
 • All bigger SAT problems can be converted into 3SAT
 • So decidability of general SAT eqvt. to decidability of 3SAT
• Many real problems have millions of variables
 • Truth Table of \(2^{|V|}\) thus monstrous
• Key result: **No known polynomial time decider algorithm**
 • Virtually all include some sort of “**guess and backtrack**”
• Further: Large class of other problems can be shown eqvt. to SAT
• Thus there is a large class of real-world problems for which no polynomial-time TM appears to exist
• **Bipartite Matching Problem** (aka *Marriage Problem*)
 - Given 2 sets $A = \{a_1, \ldots, a_{|A|}\}$ & $B = \{b_1, \ldots, b_{|B|}\}$ of vertices
 - and set E of edges e_{ij} between a_i to b_i
 - Is there a subset of edges where every vertex has at most 1 edge?

![Graph Diagram]

• **Perfect Matching**: is there a matching which includes all vertices
 - Known best algorithms $O(|V|^{2.4})$ or $O(|E|^{10/7})$

• **Maximal Matching**: what matching maximizes the number of vertices involved (not a decision problem)
• E.g. Bipartite Matching converts to a 2SAT problem
 • Variables: one x_{ij} for each edge e_{ij}
 • Assigning a 1 says a_i and b_j are matched by this edge
 • Assigning a 0 says they are NOT matched by this edge
 • For each vertex a_i, generate a set of clauses ($\neg x_{ij}$, $\neg x_{ik}$) for all j’s and k’s for which edges from vertex a_i exist
 • This prevents multiple edges from being selected from a_i at same time
 • If variables for any 2 edges were true, then some clause is false.
 • Large # of vertices but still polynomial
• What about “Tripartite” and above? – same as 3SAT
 • **No known polynomial decider algorithms**