(Sec. 3.3 pp. 182-187). Algorithms

- Key distinction re TMs and languages
- TM T recognizes L if for all win L T accepts w
- Says nothing about what if w not in L
- TM decides L if
- T recognizes L
- If w not in L, T always halts (in reject state)
- Hilbert's $10^{\text {th }}$ problem (1900): Can any algorithm tell if a polynomial equation has any integer roots?
- Sample polynomial equation: $6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10=0$
- Example does at $x=5, y=3, z=0$
- Critical point: we want yes/no answer for any polynomial
- 1970: no such algorithm exists
- Key starting point: what is an "algorithm"?
- Key Definition: 1936 Church-Turing Thesis
- Any function over the natural \#s is computable by a algorithm iff it is computable by a TM
- Each transition of a TM is a "step"
- Step takes finite time
- Finite \# of steps to get to accepting state
- "Does algorithm exist" eqvt to "Is there a TM decider"
- Back to Hilbert
- Define $\mathrm{D}=\{\mathrm{p} \mid \mathrm{p}$ is a polynomial with an integral root $\}$
- D is recognizable:
- Consider $D_{1}=\{p \mid p$ a polynomial over single variable x with an integral root\}
- Recognizing TM M_{1} : Assume input string defines a p
- Start an enumerator TM to generate $0,1-1,2,-2, \ldots$
- For each value compute p at that value
- If a root, halt and accept
- Note: if p has no integral roots, M_{1} loops
- TM recognizer for general D generates all cases of integers 1 at a time
- Hilbert's $10^{\text {th }}$ problem equivalent: does some TM decide D - I.e. Does some TM always halt for any p
- For D_{1} (exactly 1 variable) there are bounds that can constrain solution space (see p. 184 and problem 3.21)
- Thus we can halt M_{1} as soon as we reach these bounds
- Thus modified M_{1} is a decider for D_{1}
- Theorem from 1970: no such bounds exist for multivariable polynomials
- Cannot construct a decider for D same way as for D_{1}
- When deciders exist: do polynomial time TMs exist?
- (p. 184) Terminology for describing TMs
- (p. 185) 3 ways for describing TMs
- Formal Description: 7 tuple and δ
- Implementation Description: use English prose to describe tape movements and tape writing
- High-level Description: English prose to describe algorithm, ignoring implementation details
- Often building one TM out of composition of others
- (p.185)Notation for describing TM tapes(esp. initial tapes)
- Tape always contains a string
- Use strings to represent objects (\#s,grammars, graphs..)
- TM can be written to "decode" string representations
- Notation for string representation of object O : < $\mathrm{O}>$
- Notation for multiple objects $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots \mathrm{O}_{\mathrm{k}}=\left\langle\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots \mathrm{O}_{\mathrm{k}}\right\rangle$
- TM algorithm described as indented lines of text
- Each a stage: multiple TM operations
- Assume initial stage checks format of input tape

