pp. 101-108. Context Free Grammars (Sec. 2.1)

- Remember: languages are sets of strings
- Also not all languages are regular: B = {0ⁿ1ⁿ|n≥0}
- Context Free Languages (CFL): a superset of Regular Languages – but still NOT ALL POSSIBLE languages
 - E.g. B = $\{0^n1^n \mid n \ge 0\}$ is context free
 - But {aⁿbⁿcⁿdⁿ | n >0} is not context free
- (p. 102) Defined by Context Free Grammars (CFG)
 - ∑ as before + set of substitution rules + start variable
 - Terminals are symbols from alphabet
 - Nonterminals: name of set of strings
 - Sometimes in "<>"
 - Start variable = non-terminal for entire language
 - Substitution rules: how to replace a nonterminal with some string
 - Rule format: LHS -> RHS
 - LHS: nonterminal
 - RHS: a string or expression over strings:
 - Concatenation of strings
 - Using both nonterminals & terminals
 - "|" = shorthand for "or"

- (p. 102) Example of CFG with ∑ = {0,1}, Start = A
 A -> 0A1 | B
 B -> #
- (p. 103) Parse Tree: Generate a tree of strings
 - starting with root as some variable
 - Successively replace some variable on leaves by RHS of rule with that variable as LHS
 - See p. 103 for parse tree and another grammar
- Formal Definition: $G = (V, \Sigma, R, S)$
 - V is set of names for variables (the "non-terminals")
 - ∑ is alphabet (must be disjoint from V)
 - R is a set of rules: <var> -> string
 - S a start variable from V
- Derivation of one string v from another:
 - Assume u, v strings from (∑ U V)*
 - u yields v, written u => v, if
 - either u = v
 - or u = xyz where
 - y is a variable
 - There is a rule of form y -> w (w a string)
 - Where xwz = v
 - Or a series of such substitutions $u=>u_1=>u_2=>...u_k=>v$

- L(G) = Language of grammar G = $\{w \mid w \text{ in } \Sigma^*, \& S => w\}$
- (pp. 104-105) have more examples
- (p. 106) Constructing CFG from complex CFLs
 - 1. Many CFLs are unions of simpler ones
 - Construct CFGs for each piece, with start states Si
 - and then S-> $S_1 \mid ... \mid S_k$ (akin to an ϵ edge)
 - e.g. p. 106
 - 2. (p. 107) Constructing a CFG for a regular language
 - Start with a DFA accepting the regular language
 - For each state q_i in Q, define a variable R_i
 - If q₀ is start state then make R₀ the start variable
 - If δ(q_i, a) = q_i add rule R_i -> aR_i
 - For each accept state q_i, add rule R_i -> ε
 - Example: DFA on Fig. 1.44 (p. 58)
 - $V = \{R_0, R_2, R_3, R_{13}, R_{23}, R_{123}\}, S = R_{13}$
 - Rules: R_{13} -> aR_{13} ; R_{13} -> bR_2 ; R_2 -> aR_{23} ; R_2 -> bR_3 ; R_{23} -> aR_{123} ;
 - $R_{23} \rightarrow bR_3$; $R_3 \rightarrow aR_{13}$; $R_3 \rightarrow bR_0$; $R_{123} \rightarrow aR_{123}$; $R_{123} \rightarrow bR_{23}$;
 - $R_0 \rightarrow aR_0$; $R_0 \rightarrow bR_0$; $R_{13} \rightarrow \epsilon$
 - E.g. $R_{13} => bR_2 => bbR_3 => bbaR_{13} => bba$

- 3. (p. 107) Language has concatenation of 2 or more strings that seem coupled (e.g. {0ⁿ1ⁿ | n≥0})
 - Use rules like R -> uRv to build left & right in sync
- 4. (p. 107) many strings contain (recursive) substrings that are used in other structures (e.g. p.105 arithmetic exprs)
 - Use separate variable for each such structure

• (p. 108) **Ambiguity**

- Some grammars can generate same string in >1 parse trees
- If this is possible, grammar is called ambiguous
- Some CFLs inherently ambiguous (see Problem 2.29)
- E.g. (p. 108) 2 different parse trees for a+a*a from:<expr> -> <expr>+<expr> | <expr>*<expr> | a
 - <expr> => <expr>*a => <expr>*a => <expr>*a => <expr>*a =>
 - <expr> => <expr>+<expr> => a+<expr> => a+<expr>*<expr> =>
 a+a*<expr> = a+a*a
- Multiple derivations possible from same parse tree
 - eg. <expr> => <expr>+<expr> => a+<expr> => a+<expr>*<expr> =>
 a+<expr>*a = a+a*a
- Define leftmost derivation if we always replace leftmost nonterminal first at each step
- String w is derived ambiguously in G if it has ≥2 leftmost derivations

- Chomsky Normal Form: CFG where all rules of 2 forms
 - A -> BC (RHS is exactly 2 nonterminals)
 - A -> a (RHS is exactly 1 terminal)
- (p. 109) Any CFL can be generated by a CNF grammar
 - Proof: Assume G is grammar for CFL
 - Add new start variable S_0 and rule $S_0 \rightarrow S$ (S original start)
 - If we have rule A-> ε and R -> uAv (u, v arbitrary string)
 - Delete A -> ε and add R -> uv
 - If we have A -> B, then for any B ->u, add A -> u
 - If we have A -> u₁u₂...u_k, k≥3, replace by
 - A->u₁A₁
 - A₁->u₂A₂, ...
 - A_{k-3} -> $u_{k-2}A_{k-2}$,
 - A_{k-2} -> $u_{k-1}u_k$,
 - (p110) Example 2.10