pp. 101-108. Context Free Grammars (Sec. 2.1)

e Remember: languages are sets of strings
e Also not all languages are regular: B = {0"1"|n>0}
e Context Free Languages (CFL): a superset of Regular
Languages — but still NOT ALL POSSIBLE languages
e E.g. B={0"1"|n>0} is context free
e But {a"b"c"d"| n >0} is not context free
e (p. 102) Defined by Context Free Grammars (CFG)
e 5 as before + set of substitution rules + start variable
e Terminals are symbols from alphabet
e Nonterminals: name of set of strings
e Sometimes in “<>”
e Start variable = non-terminal for entire language
e Substitution rules: how to replace a nonterminal with
some string
e Rule format: LHS -> RHS
e LHS: nonterminal
e RHS: a string or expression over strings:
e Concatenation of strings
e Using both nonterminals & terminals

” = shorthand for “or”

o
o I

e (p.102) Example of CFG with > ={0,1}, Start = A
A->0A1|B
B->#
e (p. 103) Parse Tree: Generate a tree of strings
e starting with root as some variable
e Successively replace some variable on leaves by RHS of
rule with that variable as LHS
e See p. 103 for parse tree and another grammar
e Formal Definition: G=(V, 5, R, S)
e V is set of names for variables (the “non-terminals”)
e > is alphabet (must be disjoint from V)
e Ris a set of rules: <var> -> string
e S a start variable from V
e Derivation of one string v from another:
e Assume u, v strings from (> U V)*
e uyieldsv, writtenu =>v, if
e eitheru=v
® or u=xyz where
e yis avariable
e Thereis arule of formy->w (w a string)
e Where xwz =v

e Or a series of such substitutions u=>u;=>u,=>..u=>v

2

e L(G) = Language of grammar G ={w]|win >*, & S => w}
e (pp. 104-105) have more examples

e (p. 106) Constructing CFG from complex CFLs
e 1. Many CFLs are unions of simpler ones
e Construct CFGs for each piece, with start states S;
e and then S->S; |... Sk (akin to an € edge)
e e.g.p.106
e 2. (p. 107) Constructing a CFG for a regular language
e Start with a DFA accepting the regular language
e For each state giin Q, define a variable R;
o If qo is start state then make Ry the start variable
e If 6(q;, a) = g; add rule R; -> aR;
e For each accept state q;, add rule R; -> €
e Example: DFA on Fig. 1.44 (p. 58)
e V ={Ro, Rz, R3, Ri3, R23, R123}, S =Ri3

e Rules: Ri3 -> aR13; Ri3 -> sz; Ry, -> aR23} Ry, -> bR3; Ry3 -> aR123;
e Ry3->DbR3; R3->aRi3; Rz -> bRg; R123 -> aR123; R123 -> bRy3;
® Ro -> aRo; Ro -> bRo; R13 -> €

L Eg Ri3 => bR2 =>bbR3 => bbaR13 => bba

e 3. (p. 107) Language has concatenation of 2 or more
strings that seem coupled (e.g. {0"1"| n>0})
e Use rules like R -> uRv to build left & right in sync

e 4. (p. 107) many strings contain (recursive) substrings that
are used in other structures (e.g. p.105 — arithmetic exprs)
e Use separate variable for each such structure

e (p. 108) Ambiguity

e Some grammars can generate same string in >1 parse
trees

e If this is possible, grammar is called ambiguous

e Some CFLs inherently ambiguous (see Problem 2.29)

e E.g. (p. 108) 2 different parse trees for a+ta*a from:
<expr> -> <expr>+<expr> | <expr>*<expr> | a
o <expr>=><expr>*<expr> => <expr>*a => <expr>+<expr>*a =>
<expr>+a*a =>a+a*a
o <eXpr> => <expr>+<expr> => at+<expr> => a+<expr>*<expr> =>
a+a*<expr>=a+a*a

e Multiple derivations possible from same parse tree

® eg. <expr> => <expr>+<expr> => a+<expr> => a+<expr>*<expr> =>
a+<expr>*a = a+a*a

e Define leftmost derivation if we always replace leftmost
nonterminal first at each step

e String w is derived ambiguously in G if it has 22 leftmost
derivations

e Chomsky Normal Form: CFG where all rules of 2 forms
e A->BC (RHS is exactly 2 nonterminals)
e A->a (RHS is exactly 1 terminal)
e (p. 109) Any CFL can be generated by a CNF grammar
e Proof: Assume G is grammar for CFL
e Add new start variable So and rule Sp -> S (S original start)
e If we have rule A-> € and R -> uAv (u, v arbitrary string)
e Delete A->€andadd R->uv
e If we have A -> B, then forany B->u, add A->u
e If we have A -> ujus...ux, k=3, replace by
o A->U A
o Ai->UA, ...
® Ax3->Uk2Ak2,
® Ay 2->Uk-1Uk,
e (p110) Example 2.10

