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(pp. 117-124) PDAs and CFGs (Sec. 2.2) 

• A language is context free iff all strings in L can be 

generated by some context free grammar 

• Theorem 2.20: L is Context Free iff a PDA accepts it 

• I.e. if L is context free than some PDA accepts it 

• AND if a PDA accepts L, then it is context free 

• Outline of proof: must prove in both directions 

• If language A is CF, then we show construction of a PDA P  

• Use stack to keep the right hand of the intermediate 

string that includes the leftmost variable on top 

• Create transition rules from grammar rules 

• Use nondeterministic choice of rules to match terminals 

• If a PDA P recognizes L, then L is CF 

• Proof by constructing a CFG from P that matches 
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• (p117) 1st part: if G=(V,∑,R,S) is CFG for L, then some 

PDA P=(Q,∑,Γ,δ,qstart,F) accepts it 

• Proof: Build the PDA from the Grammar 

• Overview of proof by construction  

• Assume G=(V,∑,R,S) 

• Γε = V U ∑ U {$, ε} 

• = Alphabet + non-terminals + special characters $, ε 

• 3 common states: qstart, qloop, qaccept 

• F = {qaccept} 

• Additional states added for each grammar rule 

• Extra states for rules like A->xyz 

• Self-loop on qloop for rules like A->a 

  

A->xyz

A->a
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• Overview of PDA P in operation (see Fig. 2.26): 

• Start with pushing “S$” onto stack (with S on top) 

• Used $ to mark bottom of stack 

• Repeatedly loop around state qloop 

• If stack top is $, enter accept state 

• If stack top is non-terminal A, select an edge (non-

deterministically) based on one of rules for A  

• Pop the variable  

• Push the RHS (in reverse order – leftmost on top) 

• If stack top is terminal “a”, next symbol on input 

must be “a” to be accepted. Pop a.   

A->xyz

A->a
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• Formal Construction of P from Grammar 

• Remember PDA transition rule specifies pair (q, x)  

• q is next state 

• x is character to push on stack 

• Q = {qstart, qloop, qaccept} U E 

• qloop is special state where all grammar rules start & 

end 

• E = all states generated by grammar rules as 

discussed below 

• F = { qaccept}  

• Add startup transitions to push S$ on start 

• δ(qstart, ε, ε) ={(q1, $)}, q1 a new state in E 

• δ(q1, ε, ε) ={(qloop, S)} 

• Note shorthand “single edge” ε, ε->S$ 

• For each terminal a in ∑, add the following self-loop 

• δ(qloop, a, a) ={(qloop, ε)} (We 

match the a and pop from 

stack) 

• To detect acceptance, add rule 

• δ(qloop, ε, $) ={(qaccept, ε)} 

  

A->a
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• (p.118 ) For kth rule S->u1u2…uL, ui from ∑ U V  

• δ(qloop, ε, S) includes (qk,1, uL), qk,1 a new state 

• Add L-1 transitions to push u1u2…uL-1 onto stack, with 

u1 on top as follows 

• δ(qk,1, ε, ε) = {(qk,2, uL-1)}, qk,2 a new 

state in E 

• δ(qk,2, ε, ε) = {(qk,3, uL-2)}, qk,3 a new 

state in E 

• … 

• δ(qk,L-2, ε, ε) = {(qk,L-1, u2)}, ql a new 

state in E 

• δ(qk,L-1, ε, ε) = {(qloop, u1)} 

• (p. 119, Fig. 2.23) Book uses shorthand a,s->w 

(w a string) on edge for sequence of steps:  

• a,s->wn 

• ε,ε->wn-1  

• … 

• ε,ε->w1 

• (p. 120) Final machine looks like Fig.2.24 

• (p.120) Example problem Fig.2.25 

• (p. 155) See also problems 2.5, 2.7, 2.9 esp. 2.11, and 

create PDAs from CFGs 2.13, 2.14. 2.46 

Shorthand

A->xyz



6 
 

(p. 121) Now prove if some PDA accepts L, L must be CF 

• Outline: 

• Generate variable Apq in G for pair of states p & q in P 

• Generate rules for Apq that correspond to strings that 

cause transitions between the 2 states p & q 

• When stack starts as empty at p 

• And ends as empty at q 

• I.e. nothing needed or left on stack  

• Make start variable that has “or” of all variables Apq where 

p is start state and q is a final state 

• This will collect all strings from start to finish 
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• Again by construction of a CFG 

• Modify P slightly 

• Ensure a single accept state qaccept  

• From any prior accept state, add set of transitions 

that ensure stack is empty before final accept state 

• Ensure each transition either pushes or pops but not 

both or neither 

• If a transition does both (δ(q,a,x)->{(q’,y)},…),  

• add new intermediate state  

• Transition from original state does pop: a,x->ε 

• Transition from new state does push: ε,ε->y 

• If a transition does neither (δ(q,ε,ε)->{(q’,ε)},  

• add new state and select any terminal x 

• Transition from original state pushes x: a,ε->x 

• Transition from new state pops that x: ε,x->ε 
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• Now construct G = (V,∑,R,S) 

• ∑ the same 

• V = {Apq | p, q in Q} – 1 symbol for each pair of states 

• S = Aq0,qaccept  

• Construct grammar rules R as follows 

• For each p,q,r,s in Q, u in Γ, and a,b in ∑ 

• If δ(p, a, ε) contains (r,u) (we are pushing u) 

• And δ(s, b, u) contains (q, ε) (we are popping u) 

• Then add grammar rule Apq -> aArsb 

• Notes on what this does: 

• From state p we push a u and go to state r 

• From state r we can get to state s via 

transitions that leave nothing new on stack 

above u 

• Transition from s to u P pops the original u 

• See P. 122 Fig. 2.29 for stack changes 

• For each p,q,r in Q 

• Then add grammar rule Apq -> AprArs 

• Again nothing added from p to q 

• See p. 122 Fig. 2.28 

• For each p in Q 

• Then add grammar rule App -> ε 
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• (p. 123) Claim 2.30. If variable Apq generates string x, then 

x can bring P from state p with an empty stack to state q 

with empty stack 

• Proof by induction on # of steps in derivation of x 

• Basis step: it took 1 step 

• Only grammar rules with no RHS variables are App->ε 

• i.e. ε must take P from p to p without pushing 

anything onto empty stack, or attempting a pop 

• Induction Hypothesis: assume true for derivations of 

length at most k, k≥1. 

• Induction step: prove true for derivations of length k+1 

• Suppose Apq=*>x (x a string) with k+1 steps 

• Two possibilities: Apq -> aArsb or Apq =>AprArq 

• First case: Apq -> aArsb for some a,b, r,s 

• Ars must have generated y where x = ayb 

• But this must have happened in k steps, so P 

can go from r to s on empty stack 

• Because Apq -> aArsb is a rule in G 

• δ(p, a, ε) contains (r, u) for some u 

• i.e. it pushes u 

• and δ(s, b, u) contains (q, ε) 

• i.e. it pops u 
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• Thus if P starts at p with empty stack 

• After reading a it goes to state r with u on 

stack 

• Then reading y brings P to s and leaves u 

on stack 

• Second case: Apq =>AprArq  

• Assume x=yz where  

• Apr=>y in at most k steps  

• Ars=>z in at most k steps 

• Then induction hypothesis says y can bring P from p 

to r, and z can bring P from r to q, with empty 

stacks on both ends 

• (p.123) Claim 2.31: If we can bring P from p to q with 

empty stacks on both sides then Apq generates x 

• (p. 124) Corollary 2.32. Every regular language is CF. 

• Every regular language recognized by some DFA 

• Every DFA is a PDA 

• All languages accepted by a PDA are CFL 

• Sample: convert Fig. 2.15 (p. 115) back to CFG 

• Also attempt: (p. 116) Fig. 2.17 and 2.18, (p.120) 2.26 

• Also try Probs. 2.11, 2.12,  

• and convert grammars of problems 2.13, 2.14, 2.19, 2.46 


