(pp. 117-124) PDAs and CFGs (Sec. 2.2)

e A language is context free iff all stringsin L can be
generated by some context free grammar

e Theorem 2.20: L is Context Free iff a PDA accepts it
e |.e.if Lis context free than some PDA accepts it
e AND if a PDA accepts L, then it is context free

e QOutline of proof: must prove in both directions
e If language A is CF, then we show construction of a PDA P
e Use stack to keep the right hand of the intermediate
string that includes the leftmost variable on top
e Create transition rules from grammar rules
e Use nondeterministic choice of rules to match terminals
e If a PDA P recognizes L, then L is CF
e Proof by constructing a CFG from P that matches

e (p117) 15t part: if G=(V,3,R,S) is CFG for L, then some
PDA P=(Q,3,l,6,dstart,F) accepts it
e Proof: Build the PDA from the Grammar
e Overview of proof by construction
e Assume G=(V,>,R,S)
e [=VUSUIS, ¢}
e = Alphabet + non-terminals + special characters S, €
e 3 common states: Qstart, Qioop, Jaccept
® F ={Qaccept}
e Additional states added for each grammar rule
e Extra states for rules like A->xyz
e Self-loop on qieop for rules like A->a

A->a

— ==y,

oo mmm mmm E—

a,a->=¢

- = .

_----------’

D

e Overview of PDA P in operation (see Fig. 2.26):
e Start with pushing “SS” onto stack (with S on top)
e Used S to mark bottom of stack
e Repeatedly loop around state qioop
e If stack top is S, enter accept state
e If stack top is non-terminal A, select an edge (non-
deterministically) based on one of rules for A
e Pop the variable
e Push the RHS (in reverse order — leftmost on top)

“n
d

o If stack top is terminal “a”, next symbol on input

must be “a” to be accepted. Pop a.

e Formal Construction of P from Grammar

Remember PDA transition rule specifies pair (q, x)

e g is next state

e X is character to push on stack

Q = {Ustart, Qloop, qaccept} UE

® (ioop IS Special state where all grammar rules start &
end

e E =all states generated by grammar rules as
discussed below

F = { Qaccept}

Add startup transitions to push SS on start

e 8(Qstart, €, €) ={(q1, S)}, 91 a new state in E

* 6(qy, €, €) ={(dioop, S)}

e Note shorthand “single edge” €, e->S$

For each terminal ain 3, add the following self-loop

® 5(dioop, 3, @) ={(dioop, €)} (We
match the a and pop from
stack)

To detect acceptance, add rule

° 5(Q|oop, &, S) ={(qacceptr €)}

e (p.118) For kth rule S->ujus...u, uifrom> UV
® O(Qioop, €, S) includes (qk 1, UL), qk1 @ new state
e Add L-1 transitions to push uju,...u..; onto stack, with
u; on top as follows
® 5(qk1, € €) ={(dk2, u1)}, dk2 a new
stateinE
® 5(ak2, & €) ={(Aks, UL2)}, Ak3 a new
statein E

® 6(Qk1-2, €, €) = {(qk-1, U2)}, a1 @ new
stateinE
® 5(qxL-1, € €) = {(Qioop, U1)}

e (p. 119, Fig. 2.23) Book uses shorthand a,s->w shorthand
(w a string) on edge for sequence of steps: Q
® 3,5->W,
® £,6->Wn1

a,5-"WXYZ

° ...
® £,E->W;

e (p. 120) Final machine looks like Fig.2.24

e (p.120) Example problem Fig.2.25

e (p. 155) See also problems 2.5, 2.7, 2.9 esp. 2.11, and
create PDAs from CFGs 2.13, 2.14. 2.46

(p. 121) Now prove if some PDA accepts L, L must be CF
e Qutline:
e Generate variable Ay in G for pair of statesp & qin P
e Generate rules for Apq that correspond to strings that
cause transitions between the 2 statesp & g
e When stack starts as empty at p
e And ends as empty at q
e |.e. nothing needed or left on stack
e Make start variable that has “or” of all variables A,q where
p is start state and q is a final state
e This will collect all strings from start to finish

e Again by construction of a CFG
e Modify P slightly
e Ensure a single accept state Qaccept
e From any prior accept state, add set of transitions
that ensure stack is empty before final accept state
e Ensure each transition either pushes or pops but not
both or neither
e If a transition does both (6(q,a,x)->{(d’,y)},...),
e add new intermediate state
e Transition from original state does pop: a,x->¢
e Transition from new state does push: g,e->y
e If a transition does neither (6(q,€,€)->{(d’,€)},
e add new state and select any terminal x
e Transition from original state pushes x: a,e->x
e Transition from new state pops that x: g,x->¢

e Now construct G = (V,>,R,S)
e > the same
o V={A, | p,qin Q}—1symbol for each pair of states
o S= Aq0,qaccept
e Construct grammar rules R as follows
e Foreachp,q,r,sinQuinfl,anda,bin
e If §(p, a, €) contains (r,u) (we are pushing u)
e And §(s, b, u) contains (g, €) (we are popping u)
e Then add grammar rule Apq -> aArsb
e Notes on what this does:
e From state p we push a u and go to stater
e From state r we can get to state s via
transitions that leave nothing new on stack
above u
e Transition from s to u P pops the original u
e See P. 122 Fig. 2.29 for stack changes
e For each p,q,rin Q
e Then add grammar rule Apq -> AprArs
e Again nothing added from p to q
e Seep.122 Fig. 2.28
e ForeachpinQ
e Then add grammar rule Agp -> €

8

e (p. 123) Claim 2.30. If variable A, generates string x, then
x can bring P from state p with an empty stack to state g
with empty stack
e Proof by induction on # of steps in derivation of x
e Basis step: it took 1 step

e Only grammar rules with no RHS variables are Ayp->€
e j.e. € must take P from p to p without pushing
anything onto empty stack, or attempting a pop
e Induction Hypothesis: assume true for derivations of
length at most k, k>1.
¢ Induction step: prove true for derivations of length k+1
e Suppose Apq=*>x (x a string) with k+1 steps
e Two possibilities: Apgq -> aArsb or Ayq =>AprArg
e First case: Ayq -> aAb for some a,b, r,s
e A, must have generated y where x = ayb
e But this must have happened in k steps, so P
can go from r to s on empty stack
e Because Apq->aAbisarulein G
e §(p, a, €) contains (r, u) for some u
e j.e.it pushesu
e and 6(s, b, u) contains (q, €)

e j.e.it popsu

9

e Thus if P starts at p with empty stack
e After reading a it goes to state r with u on
stack

e Then reading y brings P to s and leaves u
on stack

e Second case: Ayq =>AprArq
e Assume x=yz where
e A,=>yin at most k steps
e A =>zin at most k steps
e Then induction hypothesis says y can bring P from p
tor, and z can bring P from r to q, with empty
stacks on both ends
e (p.123) Claim 2.31: If we can bring P from p to g with
empty stacks on both sides then Ayq generates x

e (p. 124) Corollary 2.32. Every regular language is CF.
e Every regular language recognized by some DFA
e Every DFA is a PDA
e All languages accepted by a PDA are CFL

e Sample: convert Fig. 2.15 (p. 115) back to CFG
e Also attempt: (p. 116) Fig. 2.17 and 2.18, (p.120) 2.26
e Also try Probs. 2.11, 2.12,
e and convert grammars of problems 2.13, 2.14, 2.19, 2.46
10

