
1

(pp. 117-124) PDAs and CFGs (Sec. 2.2)

• A language is context free iff all strings in L can be

generated by some context free grammar

• Theorem 2.20: L is Context Free iff a PDA accepts it

• I.e. if L is context free than some PDA accepts it

• AND if a PDA accepts L, then it is context free

• Outline of proof: must prove in both directions

• If language A is CF, then we show construction of a PDA P

• Use stack to keep the right hand of the intermediate

string that includes the leftmost variable on top

• Create transition rules from grammar rules

• Use nondeterministic choice of rules to match terminals

• If a PDA P recognizes L, then L is CF

• Proof by constructing a CFG from P that matches

2

• (p117) 1st part: if G=(V,∑,R,S) is CFG for L, then some

PDA P=(Q,∑,Γ,δ,qstart,F) accepts it

• Proof: Build the PDA from the Grammar

• Overview of proof by construction

• Assume G=(V,∑,R,S)

• Γε = V U ∑ U {$, ε}

• = Alphabet + non-terminals + special characters $, ε

• 3 common states: qstart, qloop, qaccept

• F = {qaccept}

• Additional states added for each grammar rule

• Extra states for rules like A->xyz

• Self-loop on qloop for rules like A->a

A->xyz

A->a

3

• Overview of PDA P in operation (see Fig. 2.26):

• Start with pushing “S$” onto stack (with S on top)

• Used $ to mark bottom of stack

• Repeatedly loop around state qloop

• If stack top is $, enter accept state

• If stack top is non-terminal A, select an edge (non-

deterministically) based on one of rules for A

• Pop the variable

• Push the RHS (in reverse order – leftmost on top)

• If stack top is terminal “a”, next symbol on input

must be “a” to be accepted. Pop a.

A->xyz

A->a

4

• Formal Construction of P from Grammar

• Remember PDA transition rule specifies pair (q, x)

• q is next state

• x is character to push on stack

• Q = {qstart, qloop, qaccept} U E

• qloop is special state where all grammar rules start &

end

• E = all states generated by grammar rules as

discussed below

• F = { qaccept}

• Add startup transitions to push S$ on start

• δ(qstart, ε, ε) ={(q1, $)}, q1 a new state in E

• δ(q1, ε, ε) ={(qloop, S)}

• Note shorthand “single edge” ε, ε->S$

• For each terminal a in ∑, add the following self-loop

• δ(qloop, a, a) ={(qloop, ε)} (We

match the a and pop from

stack)

• To detect acceptance, add rule

• δ(qloop, ε, $) ={(qaccept, ε)}

A->a

5

• (p.118) For kth rule S->u1u2…uL, ui from ∑ U V

• δ(qloop, ε, S) includes (qk,1, uL), qk,1 a new state

• Add L-1 transitions to push u1u2…uL-1 onto stack, with

u1 on top as follows

• δ(qk,1, ε, ε) = {(qk,2, uL-1)}, qk,2 a new

state in E

• δ(qk,2, ε, ε) = {(qk,3, uL-2)}, qk,3 a new

state in E

• …

• δ(qk,L-2, ε, ε) = {(qk,L-1, u2)}, ql a new

state in E

• δ(qk,L-1, ε, ε) = {(qloop, u1)}

• (p. 119, Fig. 2.23) Book uses shorthand a,s->w

(w a string) on edge for sequence of steps:

• a,s->wn

• ε,ε->wn-1

• …

• ε,ε->w1

• (p. 120) Final machine looks like Fig.2.24

• (p.120) Example problem Fig.2.25

• (p. 155) See also problems 2.5, 2.7, 2.9 esp. 2.11, and

create PDAs from CFGs 2.13, 2.14. 2.46

Shorthand

A->xyz

6

(p. 121) Now prove if some PDA accepts L, L must be CF

• Outline:

• Generate variable Apq in G for pair of states p & q in P

• Generate rules for Apq that correspond to strings that

cause transitions between the 2 states p & q

• When stack starts as empty at p

• And ends as empty at q

• I.e. nothing needed or left on stack

• Make start variable that has “or” of all variables Apq where

p is start state and q is a final state

• This will collect all strings from start to finish

7

• Again by construction of a CFG

• Modify P slightly

• Ensure a single accept state qaccept

• From any prior accept state, add set of transitions

that ensure stack is empty before final accept state

• Ensure each transition either pushes or pops but not

both or neither

• If a transition does both (δ(q,a,x)->{(q’,y)},…),

• add new intermediate state

• Transition from original state does pop: a,x->ε

• Transition from new state does push: ε,ε->y

• If a transition does neither (δ(q,ε,ε)->{(q’,ε)},

• add new state and select any terminal x

• Transition from original state pushes x: a,ε->x

• Transition from new state pops that x: ε,x->ε

8

• Now construct G = (V,∑,R,S)

• ∑ the same

• V = {Apq | p, q in Q} – 1 symbol for each pair of states

• S = Aq0,qaccept

• Construct grammar rules R as follows

• For each p,q,r,s in Q, u in Γ, and a,b in ∑

• If δ(p, a, ε) contains (r,u) (we are pushing u)

• And δ(s, b, u) contains (q, ε) (we are popping u)

• Then add grammar rule Apq -> aArsb

• Notes on what this does:

• From state p we push a u and go to state r

• From state r we can get to state s via

transitions that leave nothing new on stack

above u

• Transition from s to u P pops the original u

• See P. 122 Fig. 2.29 for stack changes

• For each p,q,r in Q

• Then add grammar rule Apq -> AprArs

• Again nothing added from p to q

• See p. 122 Fig. 2.28

• For each p in Q

• Then add grammar rule App -> ε

9

• (p. 123) Claim 2.30. If variable Apq generates string x, then

x can bring P from state p with an empty stack to state q

with empty stack

• Proof by induction on # of steps in derivation of x

• Basis step: it took 1 step

• Only grammar rules with no RHS variables are App->ε

• i.e. ε must take P from p to p without pushing

anything onto empty stack, or attempting a pop

• Induction Hypothesis: assume true for derivations of

length at most k, k≥1.

• Induction step: prove true for derivations of length k+1

• Suppose Apq=*>x (x a string) with k+1 steps

• Two possibilities: Apq -> aArsb or Apq =>AprArq

• First case: Apq -> aArsb for some a,b, r,s

• Ars must have generated y where x = ayb

• But this must have happened in k steps, so P

can go from r to s on empty stack

• Because Apq -> aArsb is a rule in G

• δ(p, a, ε) contains (r, u) for some u

• i.e. it pushes u

• and δ(s, b, u) contains (q, ε)

• i.e. it pops u

10

• Thus if P starts at p with empty stack

• After reading a it goes to state r with u on

stack

• Then reading y brings P to s and leaves u

on stack

• Second case: Apq =>AprArq

• Assume x=yz where

• Apr=>y in at most k steps

• Ars=>z in at most k steps

• Then induction hypothesis says y can bring P from p

to r, and z can bring P from r to q, with empty

stacks on both ends

• (p.123) Claim 2.31: If we can bring P from p to q with

empty stacks on both sides then Apq generates x

• (p. 124) Corollary 2.32. Every regular language is CF.

• Every regular language recognized by some DFA

• Every DFA is a PDA

• All languages accepted by a PDA are CFL

• Sample: convert Fig. 2.15 (p. 115) back to CFG

• Also attempt: (p. 116) Fig. 2.17 and 2.18, (p.120) 2.26

• Also try Probs. 2.11, 2.12,

• and convert grammars of problems 2.13, 2.14, 2.19, 2.46

