
1

(pp. 117-124) Non Context Free Languages (Sec. 2.3)

• (p. 125) Pumping Lemma for CFLs

• IF A is a CFL, then for some # p (pumping length)

• If s is any string in A, |s| ≥ p

• Then s = uvxyz (for some 5 substrings u,v,x,y,z) where

• For all i≥0, uvixyiz is in A

• And |vy| > 0

• the length of the 2 pumped parts v and y is not 0

• but just one of v or y could be ε

• and |vxy| ≤ p

• The middle string x is at most the pumping length

• Using this lemma: if we can find even one string from L

where

• there is no possible partitioning into 5 pieces

• i.e. we look at all possible partitionings

• where all conditions hold (esp. the first)

• then L is not CFL

2

• (p. 124) Notional proof

• If L is CFL then we can draw a parse tree like (p. 126) Fig.

2.35 (a) to generate each string in L

• Pick a string “long enough” that we have to reuse one of

the non-terminals, say R

• The derivation between the 1st point where R is in the tree

and its reuse could then be substituted over and over (Fig.

2.35 b) for the second use, or not at all (Fig. 2.35c)

• Example: develop language for, and then draw parse

tree for S->aSb S->#

3

• Estimating pumping length p

• Let G be CFG for A

• Let b = max # of variables on any rule RHS

• Thus, in any parse tree, no interior node (variable) can

have more than b children.

• So at most b leaves are one step from start variable

• At most b2 children 2 steps from start

• At most b3 children 3 steps from start

• ….

• Or, at most bh leaves from start in tree of h levels

• OR: if height of parse tree ≤ h then string length ≤ bh

• OR: If |s|≥bh + 1, then parse tree at least h+1 high

• Now assume p = b|V|+1 (≥ b|V|+1)

• If |s|≥p then parse tree must be at least |V|+1 high

• So some R must have been used more than once

• For convenience select R as 1st one that repeats

among lowest |V+1| variables on longest path

• Upper occurrence of R generates vxy

• Lower occurrence of R generates x

• Replacing the lower by the upper “pumps up”

• Replacing upper by lower “pumps down”

• All must be in A because generated by G

4

• (p. 128) Example B = {anbncn| n≥0} not CFL

• Assume B CFL so there is some p

• Select s = apbpcp (we need only 1 string for contradiction)

• Clearly in B with length >p

• Pumping lemma says no matter how we divide s in uvxyz,

one condition fails

• Either v or y must be non empty

• Two cases

• Only one kind of terminal in v and y

• Then x must be same terminal

• And then vxy must be in one of 3 parts an, bn, or cn

• And thus all characters in vxy are same

• And then pumping v and y (one is non empty)

destroys balance

• When either v or y contain more than one type of

terminal, then uv2xy2z might contain right #s but not all

grouped together.

5

• (p. 128) Example C = {aibjck| 0≤i≤j≤k} not CFL

• Consider s = apbpcp

• (p. 129) Example D = {ww| w in {0,1}*} not CFL

• Consider s =0p1p0p1p

• Must straddle midpoint

• Then it distorts trailing 1s on left from trailing 1s on

right

• See also problems 2.30-2.33, 2.45,

