(pp. 117-124) Non Context Free Languages (Sec. 2.3)

- (p. 125) Pumping Lemma for CFLs
 - IF A is a CFL, then for some # p (pumping length)
 - If s is any string in A, $|s| \ge p$
 - Then s = uvxyz (for *some* 5 substrings u,v,x,y,z) where
 - For all i≥0, uvⁱxyⁱz is in A
 - And |**vy**| > 0
 - the length of the 2 pumped parts v and y is not 0
 - but just one of v or y could be ε
 - and $|\mathbf{vxy}| \le p$
 - The middle string x is at most the pumping length
 - Using this lemma: if we can find even one string from L where
 - there is no possible partitioning into 5 pieces
 - i.e. we look at all possible partitionings
 - where all conditions hold (esp. the first)
 - then L is not CFL

- (p. 124) Notional proof
 - If L is CFL then we can draw a parse tree like (p. 126) Fig.
 2.35 (a) to generate each string in L
 - Pick a string "long enough" that we have to reuse one of the non-terminals, say R
 - The derivation between the 1st point where R is in the tree and its reuse could then be substituted over and over (Fig. 2.35 b) for the second use, or not at all (Fig. 2.35c)
- Example: develop language for, and then draw parse tree for S->aSb S->#

- Estimating pumping length p
 - Let G be CFG for A
 - Let **b** = max # of variables on any rule RHS
 - Thus, in any parse tree, no interior node (variable) can have more than b children.
 - So at most b leaves are one step from start variable
 - At most b² children 2 steps from start
 - At most b³ children 3 steps from start
 -
 - Or, <u>at most</u> b^h leaves from start in tree of h levels
 - OR: if height of parse tree \leq h then string length \leq b^h
 - OR: If $|s| \ge b^h + 1$, then parse tree at least h+1 high
 - Now assume $p = b^{|V|+1} (\ge b^{|V|}+1)$
 - If |s|≥p then parse tree must be at least |V|+1 high
 - So some R must have been used more than once
 - For convenience select R as 1st one that repeats among lowest |V+1| variables on longest path
 - Upper occurrence of R generates vxy
 - Lower occurrence of R generates **x**
 - Replacing the lower by the upper "pumps up"
 - Replacing upper by lower "pumps down"
 - All must be in A because generated by G

- (p. 128) Example $B = \{a^n b^n c^n | n \ge 0\}$ not CFL
 - Assume B CFL so there is some p
 - Select s = a^pb^pc^p (we need only 1 string for contradiction)
 - Clearly in B with length >p
 - Pumping lemma says no matter how we divide s in uvxyz, one condition fails
 - Either v or y must be non empty
 - Two cases
 - Only one kind of terminal in v and y
 - Then x must be same terminal
 - And then vxy must be in one of 3 parts aⁿ, bⁿ, or cⁿ
 - And thus all characters in vxy are same
 - And then pumping v and y (one is non empty) destroys balance
 - When either v or y contain more than one type of terminal, then uv²xy²z might contain right #s but not all grouped together.

- (p. 128) Example C = $\{a^i b^j c^k | 0 \le i \le j \le k\}$ not CFL
 - Consider s = a^pb^pc^p
- (p. 129) Example D = {ww| w in {0,1}*} not CFL
 - Consider s =0^p1^p0^p1^p
 - Must straddle midpoint
 - Then it distorts trailing 1s on left from trailing 1s on right
- See also problems 2.30-2.33, 2.45,