(pp. 117-124) Non Context Free Languages (Sec. 2.3)

- (p. 125) Pumping Lemma for CFLs
- IF A is a CFL, then for some \#p (pumping length)
- If s is any string in $A,|s| \geq p$
- Then $s=u v x y z$ (for some 5 substrings u, v, x, y, z) where
- For all $i \geq 0, u v^{i} x y^{i} z$ is in A
- And $|\mathrm{vy}|>0$
- the length of the 2 pumped parts v and y is not 0
- but just one of v or y could be ε
- and $|v x y| \leq p$
- The middle string x is at most the pumping length
- Using this lemma: if we can find even one string from L where
- there is no possible partitioning into 5 pieces
- i.e. we look at all possible partitionings
- where all conditions hold (esp. the first)
- then L is not CFL
- (p. 124) Notional proof
- If L is CFL then we can draw a parse tree like (p. 126) Fig. 2.35 (a) to generate each string in L
- Pick a string "long enough" that we have to reuse one of the non-terminals, say R
- The derivation between the $1^{\text {st }}$ point where R is in the tree and its reuse could then be substituted over and over (Fig. 2.35 b) for the second use, or not at all (Fig. 2.35c)
- Example: develop language for, and then draw parse tree for S->aSb S->\#
- Estimating pumping length p
- Let G be CFG for A
- Let $\mathrm{b}=\mathrm{max}$ \# of variables on any rule RHS
- Thus, in any parse tree, no interior node (variable) can have more than b children.
- So at most b leaves are one step from start variable
- At most b^{2} children 2 steps from start
- At most b^{3} children 3 steps from start
-
- Or, at most b^{h} leaves from start in tree of h levels
- OR: if height of parse tree $\leq h$ then string length $\leq b^{h}$
- OR: If $|s| \geq b^{h}+1$, then parse tree at least $h+1$ high
- Now assume $p=b^{|V|+1}\left(\geq b^{|V|}+1\right)$
- If $|s| \geq p$ then parse tree must be at least $|V|+1$ high
- So some R must have been used more than once
- For convenience select R as $1^{\text {st }}$ one that repeats among lowest |V+1| variables on longest path
- Upper occurrence of R generates vxy
- Lower occurrence of R generates x
- Replacing the lower by the upper "pumps up"
- Replacing upper by lower "pumps down"
- All must be in A because generated by G
- (p. 128) Example $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ not CFL
- Assume B CFL so there is some p
- Select $s=a^{p} b^{p} c^{p}$ (we need only 1 string for contradiction)
- Clearly in B with length $>p$
- Pumping lemma says no matter how we divide s in uvxyz, one condition fails
- Either v or y must be non empty
- Two cases
- Only one kind of terminal in vand y
- Then x must be same terminal
- And then vxy must be in one of 3 parts a^{n}, b^{n}, or c^{n}
- And thus all characters in vxy are same
- And then pumping v and y (one is non empty) destroys balance
- When either v or y contain more than one type of terminal, then $\mathrm{uv}^{2} x y^{2} z$ might contain right \#s but not all grouped together.
- (p. 128) Example $C=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i \leq j \leq k\right\}$ not CFL
- Consider $s=a^{p} b^{p} c^{p}$
- (p. 129) Example $D=\left\{w w \mid w\right.$ in $\left.\{0,1\}^{*}\right\}$ not CFL
- Consider $s=0^{p} 1^{p} 0^{p} 1^{p}$
- Must straddle midpoint
- Then it distorts trailing 1s on left from trailing 1s on right
- See also problems 2.30-2.33, 2.45,

