
Chapter 0: Math Notation  

• (p4). Sets 

• Sets: Collections of objects called members or elements 

• Membership: x ε S 

• comma-separated list in “{}” – order irrelevant 

• {x| x ε S, has some property} 

•        for all. “Ǝ” there exists 

• Multiset: members can be duplicated 

• Infinite set: set has infinite # of members 

• N = set of natural numbers {1, 2, …} 

• Z = set of integers {…, -2, -1, 0, 1, 2, …} 

• The Empty Set: Φ has no members (arity = 0) 

• Sequence or tuple notation: comma-separate list in “()” 

• Position in list is relevant 

• Number of elements in each tuple: its arity 

• k-tuple has k elements; 2-tuple = Ordered Pair = Pair 

• Elements may be repeated 

• Relationships between sets:  

• Equal, disjoint, subset, proper subset 

• Set operations: compute new set from 2 or more sets 

• Union AUB, intersection A∩B, complementation A\B 

• Cartesian/cross product AxB = {(a,b)|a ε A. b ε B} 

• Power set of set A: set of all subsets of A 

• p.5 Venn diagrams 



• (p9). Relation R over A1,..An is some subset of A1 x ... x An  

• Also called a predicate 

• Write “R(x,y,z)” if tuple (x,y,z) ε R  

• Example non-binary relation: “+” = {(x,y,z)|z=x+y} 

• One-place relations called properties 

• Positives = {x|xεZ, x>0} 

• Human = {x|x an object, x is human} 

• Binary relations from a Power Set:  

• Successor = {(x,x+1)}; > = {(x,y)| x > y} 

• ParentOf = {(x,y)|x and y human and x is parent of y} 

• Properties of binary relations: Assume R from AxA = A2 

• Reflexive: (a,a) in R  

• Symmetric: if R(a,b) then R(b,a) 

• Transitive: if R(a,b) and R(b,c) then R(a,c) 

• If R obeys all 3, then Equivalence Relation  

• Two objects are “equivalent” in some sense) 

• Assume A = P1 U P2 U …Pn where 

• Pi called an Equivalence Class 

• Pi and Pj all disjoint subsets of A 

• Pi = set of all elements x, y such that R(x,y) 

• E.g. A=Z and R = {(x,y)|x mod 3 = y mod 3} 

• P0 = {0, 3, 6 , 9, 12, …}  

• P1 = {1, 4, 7, 10, 13, …} 

• P2 = {2, 5, 8, 11, 14, …} 



• Transitive closure:  computation of equivalence class 

• Start with some element x in class 

• Add in all elements y such that R(x,y) 

• Repeat until exhausted 

• Function f: related to binary relation F over AxB where  

• for all a in A there is exactly 1 b in B such that F(a,b) 

• Set A called Domain and set B called Range 

• Written f: A → B 

• Considered a mapping from argument a to result b 

• Notation: f(a) “stands for” object b such that F(a,b) is true 

• Argument and/or result may be tuples  

• Examples page 8 &9 

• Computation: given an a, find f(a) 

• Also called function evaluation or application  

• Types of functions: 

• Total: for each a, there is some b such that F(a,b) or f(a)=b  

• Partial: there is some a with no b such that F(a,b) or f(a)=b 

• Injective or one-to-one: f(a) = f(b) iff a = b 

• Surjective or onto:  for each b there is some a where f(a) = b 

• Bijective: both above 

• If A and B overlap, a is a fixed point if f(a) = a 

• f and g composable if f:A→B and g:B→C.  

• Can write g(f(a)) 



• Since functions are sets, we can define functions that have 

domains and ranges of functions 

• Functions are first class objects 

• Define composition function ◦: (A→B)x(B→C) → (A→C) 

• ◦(g, f) = h, where h:A→C and h(a) = g(f(a)) 

• Notation for binary functions (argument is 2-tuple) 

• Prefix f(a,b), infix a f b, postfix a b f 

• Commutativity: f(a, b) = f(b, a) 

• Associativity: f(a,f(b,c)) = f(f(a,b),c) 

• i is identity element if f(i,x) = f(x,i) = x 

• Predicate: function whose range is {true, false} 

• Equivalent to relation over domain 

• Curry function ‘: ( (A1xA2x…An)→B) → ( (A2x…An)→B)  

• Where ((‘f)(a1)) = g a1 where g a1(a2, …an) = f(a1, a2, …an) 

  



• (p.10). Graphs 

• Vertices and edges as sets 

• Degree of a vertex: # of edges from it 

• Labelled graph: vertices and/or edges have properties 

• Subgraph: subset of vertices and edges 

• Path, simple path, cycle, simple cycle 

• Connected graph 

• Tree 

• Directed graph 

• in-degree, out-degree 

• Directed path 

• Strongly connected  

• Graph = binary relation 

• (p. 14): Boolean Logic 

• Functions with domains and ranges from {0, 1} 

• And, or, exclusive or, equality, implication 

 

  



• (p. 13). Strings and Languages 

• Alphabet = set of symbols typically written as ∑ 

• String over an alphabet: sequence of symbols 

• Length: # of symbols in string 

• Empty string ε: string of no symbols 

• Reverse of a string = string with symbols in reverse order 

• Substring of string w: string that appears within string w 

• Concatenate(x,y): string x followed by string y, written xy 

• wk = concatenation of string w with itself k times 

• Kleene operators: unary operators on a string or set of strings 

• Kleene Star: w* = { ε, w, ww, www, wwww, …..} 

• If W is a set {w1, w2, ….}, W* = set of all 0 or more 

concatenations of strings from W 

• Kleene Plus: w+ or W+ - same as * but 1 or more times 

• x is a prefix of y if y = xz for some z 

• proper prefix: z not ε 

• string order 

• Lexicographic: familiar dictionary order 

• Shortlex or string order: same as above but short strings 

first 

• Language: set of strings formed in a particular way 

• Grammar: set of rules defining the valid strings 

• Prefix free: no member is proper prefix of another 

  



• (p.102) BNF (Backus Normal Form) 

• Language for describing common grammar rules  

• Set of substitution rules (or productions) 

• Nonterminal: name for a subset of strings that have some 

particular structure 

• Written as “<” name of nonterminal class “>” 

• E.g. <number> 

• Each rule of form “LHS  -> RHS” 

• LHS = “left hand side” = name of a nonterminal 

• RHS = “right hand side” = expression on how to 

concatenate strings in a valid fashion 

• Meaning: if you see a string as defined on right, you can call 

it a string of type named on left 

• Multiple rules can have same LHS 

• RHS may be > one string expressions separated by “|” 

• Meaning: any of the expressions works 

• A single RHS string expression 

• Concatenation of symbols from alphabet or nonterminals 

• May use Kleene operators * or  + 

• Applied to either a string or a nonterminal 

• May be recursive, i.e. may use nonterminal from LHS 

• Example simple sentences: page 103  

• Example simple expressions: page 105 

  



• (p. 17): Definitions, Theorems, Proofs 

• Definition: description of object or set of objects 

• Mathematical Statement: expresses that some objects have 

certain properties 

• Proof: logical argument that a statement is true 

• Theorem: statement that has been proven true 

• Lemma: proved statement used in bigger proof 

• Corollary:  statement that can be proven easily once some 

other statement is proven 

• (p. 18): composition of statements 

• Implication: if P then Q, or “Q if P”, written P => Q 

• Equivalence: P iff Q, written P  Q 

• Inferences: showing that some statement is true from some 

others 

• Forward Inference: given that statement P=>Q is true 

• If you can prove statement P is true 

• Then you can say Q is true 

• Backwards Inference: given statement P=>Q 

• If you can prove Q is false 

• Then you can say P must be false 

• Examples: p. 18 & p. 20 

  



• P.21. Proof Types 

• By construction: useful in “for all x Ǝy P(x,y)” 

• Demonstrate for any x how to construct the object y 

• Example p. 21, Theorem 0.22 

• By Contradiction: Want to prove some statement Q is true 

• Assume opposite of desired statement is false and show 

that this leads to a contradiction 

• And thus assumption that Q is false must be false 

• i.e. Q must be true 

• Also known as indirect proof 

• (p.22) prove that sqrt(2) is irrational 

• Assume opposite, i.e. sqrt(2) is rational = m/n 

• m and n have no common multiples 

• either m or n must be odd 

• Then n*sqrt(2) = m 

• Then n22 = m2 

• Thus m2 is even 

• Thus m must be even (square of odd always odd) 

• Thus m = 2k, or n22 = (2k)2 = 4k2  

• Thus n2 = 2k2  

• Thus n must also be even 

• But then both m and n must be even! Contradiction! 

• Thus sqrt(2) cannot be rational  



• (p.22)By Induction: useful to show that for all x in some 

ordered set X: x1, …xk,… P(x) is true 

• 3 step process 

• Basis Step: prove P(x1) is true 

• State the Induction Hypothesis: P(xk) => P(xk+1) for all k 

• i.e. what we are trying to prove is that if we assume 

P(xk) is true, then P(xk+1) must also be true  

• Induction Step: Prove Induction Hypothesis 

• Typically by assuming P(xk) is true 

• If induction step is proven true 

• And we prove P(x1) is true 

• Then P(x2) is true because P(x1) is  

• Then P(x3) is true because P(x4) is 

• Then … 

• Example 1+2+3+ … n = n(n+1)/2 

• (p. 24) example of mortgage calculation where 

• P = original principal  

• t = number of months of loan 

• Pt = loan remaining after t months 

• M = monthly interest rate percentage + 1 

• Y = monthly mortgage payment 


