Chapter 0: Math Notation

- (p4). Sets
 - Sets: Collections of objects called members or elements
 - Membership: $x \in S$
 - comma-separated list in "{}" order irrelevant
 - {x | x ε S, has some property}
 - ∀ for all. "∃" there exists
 - Multiset: members can be duplicated
 - Infinite set: set has infinite # of members
 - N = set of natural numbers {1, 2, ...}
 - **Z** = set of integers {..., -2, -1, 0, 1, 2, ...}
 - The Empty Set: Φ has no members (arity = 0)
 - Sequence or tuple notation: comma-separate list in "()"
 - Position in list is relevant
 - Number of elements in each tuple: its arity
 - k-tuple has k elements; 2-tuple = Ordered Pair = Pair
 - Elements may be repeated
 - Relationships between sets:
 - Equal, disjoint, subset, proper subset
 - Set operations: compute new set from 2 or more sets
 - Union AUB, intersection A∩B, complementation A\B
 - **Cartesian/cross product** AxB = {(a,b)|a ε A. b ε B}
 - Power set of set A: set of all subsets of A
 - p.5 Venn diagrams

- (p9). Relation R over A₁,..A_n is some subset of A₁ x ... x A_n
 - Also called a predicate
 - Write "R(x,y,z)" if tuple (x,y,z) ε R
 - Example non-binary relation: "+" = {(x,y,z) | z=x+y}
 - One-place relations called properties
 - Positives = $\{x | x \in \mathbb{Z}, x > 0\}$
 - Human = {x | x an object, x is human}
 - **Binary relations** from a Power Set:
 - Successor = $\{(x,x+1)\}; > = \{(x,y) | x > y\}$
 - ParentOf = {(x,y) | x and y human and x is parent of y}
 - Properties of binary relations: Assume R from AxA = A²
 - **Reflexive**: (a,a) in R
 - **Symmetric**: if R(a,b) then R(b,a)
 - **Transitive**: if R(a,b) and R(b,c) then R(a,c)
 - If R obeys all 3, then Equivalence Relation
 - Two objects are "equivalent" in some sense)
 - Assume $A = P_1 U P_2 U ... P_n$ where
 - P_i called an Equivalence Class
 - P_i and P_j all disjoint subsets of A
 - P_i = set of all elements x, y such that R(x,y)
 - E.g. A=Z and R = {(x,y) | x mod 3 = y mod 3}
 - P₀ = {0, 3, 6, 9, 12, ...}
 - P₁ = {1, 4, 7, 10, 13, ...}
 - P₂ = {2, 5, 8, 11, 14, ...}

• **Transitive closure**: computation of equivalence class

- Start with some element x in class
- Add in all elements y such that R(x,y)
- Repeat until exhausted
- Function f: related to binary relation F over AxB where
 - for all a in A there is exactly 1 b in B such that F(a,b)
 - Set A called **Domain** and set B called **Range**
 - Written f: $A \rightarrow B$
 - Considered a mapping from argument a to result b
 - Notation: f(a) "stands for" object b such that F(a,b) is true
 - Argument and/or result may be tuples
 - Examples page 8 & 9
- **Computation**: given an a, find f(a)
 - Also called **function evaluation** or **application**
- Types of functions:
 - Total: for each a, there is some b such that F(a,b) or f(a)=b
 - Partial: there is some a with no b such that F(a,b) or f(a)=b
 - **Injective or one-to-one**: f(a) = f(b) iff a = b
 - Surjective or onto: for each b there is some a where f(a) = b
 - Bijective: both above
 - If A and B overlap, a is a **fixed point** if f(a) = a
 - f and g composable if $f:A \rightarrow B$ and $g:B \rightarrow C$.
 - Can write g(f(a))

- Since functions are sets, we can define functions that <u>have</u> <u>domains and ranges of functions</u>
 - Functions are first class objects
 - Define **composition function** \circ : $(A \rightarrow B)x(B \rightarrow C) \rightarrow (A \rightarrow C)$
 - \circ (g, f) = h, where h:A \rightarrow C and h(a) = g(f(a))
- Notation for binary functions (argument is 2-tuple)
 - **Prefix** f(a,b), **infix** a f b, **postfix** a b f
 - **Commutativity**: f(a, b) = f(b, a)
 - Associativity: f(a,f(b,c)) = f(f(a,b),c)
 - i is **identity element** if f(i,x) = f(x,i) = x
- **Predicate**: function whose range is {true, false}
 - Equivalent to relation over domain
- Curry function ': $((A_1 x A_2 x ... A_n) \rightarrow B) \rightarrow ((A_2 x ... A_n) \rightarrow B)$
 - Where (('f)(a₁)) = g _{a1} where g _{a1}(a₂, ...a_n) = f(a₁, a₂, ...a_n)

- (p.10). Graphs
 - Vertices and edges as sets
 - Degree of a vertex: # of edges from it
 - Labelled graph: vertices and/or edges have properties
 - **Subgraph**: subset of vertices and edges
 - Path, simple path, cycle, simple cycle
 - Connected graph
 - Tree
 - Directed graph
 - in-degree, out-degree
 - Directed path
 - Strongly connected
 - Graph = binary relation
- (p. 14): Boolean Logic
 - Functions with domains and ranges from {0, 1}
 - And, or, exclusive or, equality, implication

- (p. 13). Strings and Languages
 - Alphabet = set of symbols typically written as ∑
 - String over an alphabet: sequence of symbols
 - Length: # of symbols in string
 - Empty string ε: string of no symbols
 - **Reverse** of a string = string with symbols in reverse order
 - **Substring of string w:** string that appears within string w
 - **Concatenate(x,y):** string x followed by string y, written xy
 - w^k = concatenation of string w with itself k times
 - Kleene operators: unary operators on a string or set of strings
 - **Kleene Star**: w^{*} = { ε, w, ww, www, www,}
 - If W is a set {w₁, w₂,}, W* = set of all 0 or more concatenations of strings from W
 - Kleene Plus: w⁺ or W⁺ same as * but 1 or more times
 - x is a **prefix** of y if y = xz for some z
 - proper prefix: z not ε
 - string order
 - Lexicographic: familiar dictionary order
 - Shortlex or string order: same as above but short strings first
 - Language: set of strings formed in a particular way
 - Grammar: set of rules defining the valid strings
 - **Prefix free**: no member is proper prefix of another

- (p.102) BNF (Backus Normal Form)
 - Language for describing common grammar rules
 - Set of substitution rules (or productions)
 - Nonterminal: name for a subset of strings that have some particular structure
 - Written as "<" name of nonterminal class ">"
 - E.g. <number>
 - Each **rule** of form "LHS -> RHS"
 - LHS = "left hand side" = name of a nonterminal
 - RHS = "right hand side" = expression on how to concatenate strings in a valid fashion
 - Meaning: if you see a string as defined on right, you can call it a string of type named on left
 - Multiple rules can have same LHS
 - RHS may be > one string expressions separated by "|"
 - Meaning: any of the expressions works
 - A single RHS string expression
 - Concatenation of symbols from alphabet or nonterminals
 - May use Kleene operators * or +
 - Applied to either a string or a nonterminal
 - May be recursive, i.e. may use nonterminal from LHS
 - Example simple sentences: page 103
 - Example simple expressions: page 105

- (p. 17): Definitions, Theorems, Proofs
 - **Definition**: description of object or set of objects
 - Mathematical Statement: expresses that some objects have certain properties
 - **Proof**: logical argument that a statement is true
 - **Theorem**: statement that has been proven true
 - Lemma: proved statement used in bigger proof
 - **Corollary**: statement that can be proven easily once some other statement is proven
 - (p. 18): composition of statements
 - Implication: if P then Q, or "Q if P", written P => Q
 - Equivalence: P iff Q, written P ⇔ Q
 - Inferences: showing that some statement is true from some others
 - Forward Inference: given that statement P=>Q is true
 - If you can prove statement P is true
 - Then you can say Q is true
 - Backwards Inference: given statement P=>Q
 - If you can prove Q is false
 - Then you can say P must be false
 - Examples: p. 18 & p. 20

• P.21. Proof Types

- **By construction**: useful in "for all x ∃y P(x,y)"
 - Demonstrate for any x how to construct the object y
 - Example p. 21, Theorem 0.22
- By Contradiction: Want to prove some statement Q is true
 - Assume <u>opposite</u> of desired statement is false and show that this leads to a contradiction
 - And thus assumption that Q is false must be false
 - i.e. Q must be true
 - Also known as indirect proof
 - (p.22) prove that sqrt(2) is irrational
 - Assume opposite, i.e. sqrt(2) is rational = m/n
 - m and n have no common multiples
 - <u>either</u> m <u>or</u> n must be odd
 - Then n*sqrt(2) = m
 - Then $n^2 2 = m^2$
 - Thus m² is even
 - Thus m must be even (square of odd always odd)
 - Thus m = 2k, or $n^2 2 = (2k)^2 = 4k^2$
 - Thus $n^2 = 2k^2$
 - Thus n must also be even
 - But then both m and n must be even! Contradiction!
 - Thus sqrt(2) cannot be rational

- (p.22)By Induction: useful to show that *for all* x in some ordered set X: x₁, ...x_k,... P(x) is true
 - 3 step process
 - **Basis Step**: prove P(x₁) is true
 - State the Induction Hypothesis: $P(x_k) => P(x_{k+1})$ for all k
 - i.e. what we are trying to prove is that if we assume
 P(x_k) is true, then P(x_{k+1}) must also be true
 - Induction Step: Prove Induction Hypothesis
 - Typically by assuming P(x_k) is true
 - If induction step is proven true
 - And we prove P(x₁) is true
 - Then P(x₂) is true because P(x₁) is
 - Then P(x₃) is true because P(x₄) is
 - Then ...
 - Example 1+2+3+ ... n = n(n+1)/2
 - (p. 24) example of mortgage calculation where
 - P = original principal
 - t = number of months of loan
 - P_t = loan remaining after t months
 - M = monthly interest rate percentage + 1
 - Y = monthly mortgage payment