
Chapter 0: Math Notation

• (p4). Sets

• Sets: Collections of objects called members or elements

• Membership: x ε S

• comma-separated list in “{}” – order irrelevant

• {x| x ε S, has some property}

• for all. “Ǝ” there exists

• Multiset: members can be duplicated

• Infinite set: set has infinite # of members

• N = set of natural numbers {1, 2, …}

• Z = set of integers {…, -2, -1, 0, 1, 2, …}

• The Empty Set: Φ has no members (arity = 0)

• Sequence or tuple notation: comma-separate list in “()”

• Position in list is relevant

• Number of elements in each tuple: its arity

• k-tuple has k elements; 2-tuple = Ordered Pair = Pair

• Elements may be repeated

• Relationships between sets:

• Equal, disjoint, subset, proper subset

• Set operations: compute new set from 2 or more sets

• Union AUB, intersection A∩B, complementation A\B

• Cartesian/cross product AxB = {(a,b)|a ε A. b ε B}

• Power set of set A: set of all subsets of A

• p.5 Venn diagrams

• (p9). Relation R over A1,..An is some subset of A1 x ... x An

• Also called a predicate

• Write “R(x,y,z)” if tuple (x,y,z) ε R

• Example non-binary relation: “+” = {(x,y,z)|z=x+y}

• One-place relations called properties

• Positives = {x|xεZ, x>0}

• Human = {x|x an object, x is human}

• Binary relations from a Power Set:

• Successor = {(x,x+1)}; > = {(x,y)| x > y}

• ParentOf = {(x,y)|x and y human and x is parent of y}

• Properties of binary relations: Assume R from AxA = A2

• Reflexive: (a,a) in R

• Symmetric: if R(a,b) then R(b,a)

• Transitive: if R(a,b) and R(b,c) then R(a,c)

• If R obeys all 3, then Equivalence Relation

• Two objects are “equivalent” in some sense)

• Assume A = P1 U P2 U …Pn where

• Pi called an Equivalence Class

• Pi and Pj all disjoint subsets of A

• Pi = set of all elements x, y such that R(x,y)

• E.g. A=Z and R = {(x,y)|x mod 3 = y mod 3}

• P0 = {0, 3, 6 , 9, 12, …}

• P1 = {1, 4, 7, 10, 13, …}

• P2 = {2, 5, 8, 11, 14, …}

• Transitive closure: computation of equivalence class

• Start with some element x in class

• Add in all elements y such that R(x,y)

• Repeat until exhausted

• Function f: related to binary relation F over AxB where

• for all a in A there is exactly 1 b in B such that F(a,b)

• Set A called Domain and set B called Range

• Written f: A → B

• Considered a mapping from argument a to result b

• Notation: f(a) “stands for” object b such that F(a,b) is true

• Argument and/or result may be tuples

• Examples page 8 &9

• Computation: given an a, find f(a)

• Also called function evaluation or application

• Types of functions:

• Total: for each a, there is some b such that F(a,b) or f(a)=b

• Partial: there is some a with no b such that F(a,b) or f(a)=b

• Injective or one-to-one: f(a) = f(b) iff a = b

• Surjective or onto: for each b there is some a where f(a) = b

• Bijective: both above

• If A and B overlap, a is a fixed point if f(a) = a

• f and g composable if f:A→B and g:B→C.

• Can write g(f(a))

• Since functions are sets, we can define functions that have

domains and ranges of functions

• Functions are first class objects

• Define composition function ◦: (A→B)x(B→C) → (A→C)

• ◦(g, f) = h, where h:A→C and h(a) = g(f(a))

• Notation for binary functions (argument is 2-tuple)

• Prefix f(a,b), infix a f b, postfix a b f

• Commutativity: f(a, b) = f(b, a)

• Associativity: f(a,f(b,c)) = f(f(a,b),c)

• i is identity element if f(i,x) = f(x,i) = x

• Predicate: function whose range is {true, false}

• Equivalent to relation over domain

• Curry function ‘: ((A1xA2x…An)→B) → ((A2x…An)→B)

• Where ((‘f)(a1)) = g a1 where g a1(a2, …an) = f(a1, a2, …an)

• (p.10). Graphs

• Vertices and edges as sets

• Degree of a vertex: # of edges from it

• Labelled graph: vertices and/or edges have properties

• Subgraph: subset of vertices and edges

• Path, simple path, cycle, simple cycle

• Connected graph

• Tree

• Directed graph

• in-degree, out-degree

• Directed path

• Strongly connected

• Graph = binary relation

• (p. 14): Boolean Logic

• Functions with domains and ranges from {0, 1}

• And, or, exclusive or, equality, implication

• (p. 13). Strings and Languages

• Alphabet = set of symbols typically written as ∑

• String over an alphabet: sequence of symbols

• Length: # of symbols in string

• Empty string ε: string of no symbols

• Reverse of a string = string with symbols in reverse order

• Substring of string w: string that appears within string w

• Concatenate(x,y): string x followed by string y, written xy

• wk = concatenation of string w with itself k times

• Kleene operators: unary operators on a string or set of strings

• Kleene Star: w* = { ε, w, ww, www, wwww, …..}

• If W is a set {w1, w2, ….}, W* = set of all 0 or more

concatenations of strings from W

• Kleene Plus: w+ or W+ - same as * but 1 or more times

• x is a prefix of y if y = xz for some z

• proper prefix: z not ε

• string order

• Lexicographic: familiar dictionary order

• Shortlex or string order: same as above but short strings

first

• Language: set of strings formed in a particular way

• Grammar: set of rules defining the valid strings

• Prefix free: no member is proper prefix of another

• (p.102) BNF (Backus Normal Form)

• Language for describing common grammar rules

• Set of substitution rules (or productions)

• Nonterminal: name for a subset of strings that have some

particular structure

• Written as “<” name of nonterminal class “>”

• E.g. <number>

• Each rule of form “LHS -> RHS”

• LHS = “left hand side” = name of a nonterminal

• RHS = “right hand side” = expression on how to

concatenate strings in a valid fashion

• Meaning: if you see a string as defined on right, you can call

it a string of type named on left

• Multiple rules can have same LHS

• RHS may be > one string expressions separated by “|”

• Meaning: any of the expressions works

• A single RHS string expression

• Concatenation of symbols from alphabet or nonterminals

• May use Kleene operators * or +

• Applied to either a string or a nonterminal

• May be recursive, i.e. may use nonterminal from LHS

• Example simple sentences: page 103

• Example simple expressions: page 105

• (p. 17): Definitions, Theorems, Proofs

• Definition: description of object or set of objects

• Mathematical Statement: expresses that some objects have

certain properties

• Proof: logical argument that a statement is true

• Theorem: statement that has been proven true

• Lemma: proved statement used in bigger proof

• Corollary: statement that can be proven easily once some

other statement is proven

• (p. 18): composition of statements

• Implication: if P then Q, or “Q if P”, written P => Q

• Equivalence: P iff Q, written P  Q

• Inferences: showing that some statement is true from some

others

• Forward Inference: given that statement P=>Q is true

• If you can prove statement P is true

• Then you can say Q is true

• Backwards Inference: given statement P=>Q

• If you can prove Q is false

• Then you can say P must be false

• Examples: p. 18 & p. 20

• P.21. Proof Types

• By construction: useful in “for all x Ǝy P(x,y)”

• Demonstrate for any x how to construct the object y

• Example p. 21, Theorem 0.22

• By Contradiction: Want to prove some statement Q is true

• Assume opposite of desired statement is false and show

that this leads to a contradiction

• And thus assumption that Q is false must be false

• i.e. Q must be true

• Also known as indirect proof

• (p.22) prove that sqrt(2) is irrational

• Assume opposite, i.e. sqrt(2) is rational = m/n

• m and n have no common multiples

• either m or n must be odd

• Then n*sqrt(2) = m

• Then n22 = m2

• Thus m2 is even

• Thus m must be even (square of odd always odd)

• Thus m = 2k, or n22 = (2k)2 = 4k2

• Thus n2 = 2k2

• Thus n must also be even

• But then both m and n must be even! Contradiction!

• Thus sqrt(2) cannot be rational

• (p.22)By Induction: useful to show that for all x in some

ordered set X: x1, …xk,… P(x) is true

• 3 step process

• Basis Step: prove P(x1) is true

• State the Induction Hypothesis: P(xk) => P(xk+1) for all k

• i.e. what we are trying to prove is that if we assume

P(xk) is true, then P(xk+1) must also be true

• Induction Step: Prove Induction Hypothesis

• Typically by assuming P(xk) is true

• If induction step is proven true

• And we prove P(x1) is true

• Then P(x2) is true because P(x1) is

• Then P(x3) is true because P(x4) is

• Then …

• Example 1+2+3+ … n = n(n+1)/2

• (p. 24) example of mortgage calculation where

• P = original principal

• t = number of months of loan

• Pt = loan remaining after t months

• M = monthly interest rate percentage + 1

• Y = monthly mortgage payment

