Chapter 0: Math Notation

- (p4). Sets
- Sets: Collections of objects called members or elements
- Membership: x \& S
- comma-separated list in "\{\}" - order irrelevant
- $\{x \mid x \in S$, has some property $\}$
- \forall for all. " \exists " there exists
- Multiset: members can be duplicated
- Infinite set: set has infinite \# of members
- $\mathbf{N}=$ set of natural numbers $\{1,2, \ldots\}$
- $Z=$ set of integers $\{\ldots,-2,-1,0,1,2, \ldots\}$
- The Empty Set: Φ has no members (arity = 0)
- Sequence or tuple notation: comma-separate list in "()"
- Position in list is relevant
- Number of elements in each tuple: its arity
- k-tuple has k elements; 2-tuple = Ordered Pair = Pair
- Elements may be repeated
- Relationships between sets:
- Equal, disjoint, subset, proper subset
- Set operations: compute new set from 2 or more sets
- Union $A U B$, intersection $A \cap B$, complementation $A \backslash B$
- Cartesian/cross product $A x B=\{(a, b) \mid a \varepsilon A . b \varepsilon B\}$
- Power set of set A : set of all subsets of A
- p. 5 Venn diagrams
- (p9). Relation R over $A_{1}, . . A_{n}$ is some subset of $A_{1} \times \ldots \times A_{n}$
- Also called a predicate
- Write " $R(x, y, z)$ " if tuple $(x, y, z) \varepsilon R$
- Example non-binary relation: "+" $=\{(x, y, z) \mid z=x+y\}$
- One-place relations called properties
- Positives $=\{x \mid x \varepsilon Z, x>0\}$
- Human $=\{x \mid x$ an object, x is human $\}$
- Binary relations from a Power Set:
- Successor $=\{(x, x+1)\} ;>=\{(x, y) \mid x>y\}$
- ParentOf $=\{(x, y) \mid x$ and y human and x is parent of $y\}$
- Properties of binary relations: Assume R from $A x A=A^{2}$
- Reflexive: (a, a) in R
- Symmetric: if $R(a, b)$ then $R(b, a)$
- Transitive: if $R(a, b)$ and $R(b, c)$ then $R(a, c)$
- If R obeys all 3, then Equivalence Relation
- Two objects are "equivalent" in some sense)
- Assume $A=P_{1} U P_{2} U$... P_{n} where
- P_{i} called an Equivalence Class
- P_{i} and P_{j} all disjoint subsets of A
- $P_{i}=$ set of all elements x, y such that $R(x, y)$
- E.g. $A=Z$ and $R=\{(x, y) \mid x \bmod 3=y \bmod 3\}$
- $P_{0}=\{0,3,6,9,12, \ldots\}$
- $P_{1}=\{1,4,7,10,13, \ldots\}$
- $P_{2}=\{2,5,8,11,14, \ldots\}$
- Transitive closure: computation of equivalence class
- Start with some element x in class
- Add in all elements y such that $\mathrm{R}(\mathrm{x}, \mathrm{y})$
- Repeat until exhausted
- Function f : related to binary relation F over AxB where
- for all a in A there is exactly $1 b$ in B such that $F(a, b)$
- Set A called Domain and set B called Range
- Written f: A \rightarrow B
- Considered a mapping from argument a to result b
- Notation: $\mathrm{f}(\mathrm{a})$ "stands for" object b such that $\mathrm{F}(\mathrm{a}, \mathrm{b})$ is true
- Argument and/or result may be tuples
- Examples page 8 \&9
- Computation: given an a, find $f(a)$
- Also called function evaluation or application
- Types of functions:
- Total: for each a , there is some b such that $\mathrm{F}(\mathrm{a}, \mathrm{b})$ or $\mathrm{f}(\mathrm{a})=\mathrm{b}$
- Partial: there is some a with no b such that $F(a, b)$ or $f(a)=b$
- Injective or one-to-one: $f(a)=f(b)$ iff $a=b$
- Surjective or onto: for each b there is some a where $f(a)=b$
- Bijective: both above
- If A and B overlap, a is a fixed point if $f(a)=a$
- f and g composable if $f: A \rightarrow B$ and $g: B \rightarrow C$.
- Can write g(f(a))
- Since functions are sets, we can define functions that have domains and ranges of functions
- Functions are first class objects
- Define composition function ${ }^{\circ}(A \rightarrow B) x(B \rightarrow C) \rightarrow(A \rightarrow C)$
- ${ }^{\circ}(g, f)=h$, where $h: A \rightarrow C$ and $h(a)=g(f(a))$
- Notation for binary functions (argument is 2-tuple)
- Prefix $f(a, b)$, infix a f b, postfix a b f
- Commutativity: $f(a, b)=f(b, a)$
- Associativity: $\mathrm{f}(\mathrm{a}, \mathrm{f}(\mathrm{b}, \mathrm{c}))=\mathrm{f}(\mathrm{f}(\mathrm{a}, \mathrm{b}), \mathrm{c})$
- i is identity element if $f(i, x)=f(x, i)=x$
- Predicate: function whose range is \{true, false\}
- Equivalent to relation over domain
- Curry function ' $:\left(\left(A_{1} \times A_{2} \times \ldots A_{n}\right) \rightarrow B\right) \rightarrow\left(\left(A_{2} x \ldots A_{n}\right) \rightarrow B\right)$
- Where $\left(\left({ }^{\prime} f\right)\left(a_{1}\right)\right)=g_{\text {a1 }}$ where $g_{a 1}\left(a_{2}, \ldots a_{n}\right)=f\left(a_{1}, a_{2}, \ldots a_{n}\right)$
- (p.10). Graphs
- Vertices and edges as sets
- Degree of a vertex: \# of edges from it
- Labelled graph: vertices and/or edges have properties
- Subgraph: subset of vertices and edges
- Path, simple path, cycle, simple cycle
- Connected graph
- Tree
- Directed graph
- in-degree, out-degree
- Directed path
- Strongly connected
- Graph = binary relation
- (p. 14): Boolean Logic
- Functions with domains and ranges from $\{0,1\}$
- And, or, exclusive or, equality, implication
- (p. 13). Strings and Languages
- Alphabet = set of symbols typically written as \sum
- String over an alphabet: sequence of symbols
- Length: \# of symbols in string
- Empty string ε : string of no symbols
- Reverse of a string = string with symbols in reverse order
- Substring of string w: string that appears within string w
- Concatenate(x, y): string x followed by string y, written $x y$
- $w^{k}=$ concatenation of string w with itself k times
- Kleene operators: unary operators on a string or set of strings
- Kleene Star: $w^{*}=\{\varepsilon, w, w w, w w w, w w w w, ~$.
- If W is a set $\left\{\mathrm{w}_{1}, \mathrm{~W}_{2}, \ldots.\right\}, \mathrm{W}^{*}=$ set of all 0 or more concatenations of strings from W
- Kleene Plus: w^{+}or W^{+}- same as * but 1 or more times
- x is a prefix of y if $y=x z$ for some z
- proper prefix: z not ε
- string order
- Lexicographic: familiar dictionary order
- Shortlex or string order: same as above but short strings first
- Language: set of strings formed in a particular way
- Grammar: set of rules defining the valid strings
- Prefix free: no member is proper prefix of another
- (p.102) BNF (Backus Normal Form)
- Language for describing common grammar rules
- Set of substitution rules (or productions)
- Nonterminal: name for a subset of strings that have some particular structure
- Written as "<" name of nonterminal class ">"
- E.g. <number>
- Each rule of form "LHS -> RHS"
- LHS = "left hand side" = name of a nonterminal
- RHS = "right hand side" = expression on how to concatenate strings in a valid fashion
- Meaning: if you see a string as defined on right, you can call it a string of type named on left
- Multiple rules can have same LHS
- RHS may be > one string expressions separated by "|"
- Meaning: any of the expressions works
- A single RHS string expression
- Concatenation of symbols from alphabet or nonterminals
- May use Kleene operators * or +
- Applied to either a string or a nonterminal
- May be recursive, i.e. may use nonterminal from LHS
- Example simple sentences: page 103
- Example simple expressions: page 105
- (p. 17): Definitions, Theorems, Proofs
- Definition: description of object or set of objects
- Mathematical Statement: expresses that some objects have certain properties
- Proof: logical argument that a statement is true
- Theorem: statement that has been proven true
- Lemma: proved statement used in bigger proof
- Corollary: statement that can be proven easily once some other statement is proven
- (p.18): composition of statements
- Implication: if P then Q, or " Q if P ", written $P=>$
- Equivalence: P iff Q, written $\mathrm{P} \Leftrightarrow \mathrm{Q}$
- Inferences: showing that some statement is true from some others
- Forward Inference: given that statement $P=>Q$ is true
- If you can prove statement P is true
- Then you can say Q is true
- Backwards Inference: given statement $P=>Q$
- If you can prove Q is false
- Then you can say P must be false
- Examples: p. 18 \& p. 20

- P.21. Proof Types

- By construction: useful in "for all $x \exists y P(x, y)$ "
- Demonstrate for any x how to construct the object y
- Example p. 21, Theorem 0.22
- By Contradiction: Want to prove some statement Q is true
- Assume opposite of desired statement is false and show that this leads to a contradiction
- And thus assumption that Q is false must be false
- i.e. Q must be true
- Also known as indirect proof
- (p.22) prove that sqrt(2) is irrational
- Assume opposite, i.e. $\operatorname{sqrt}(2)$ is rational $=m / n$
- m and n have no common multiples
- either m or n must be odd
- Then n^{*} sqrt(2) $=m$
- Then $\mathrm{n}^{2} 2=\mathrm{m}^{2}$
- Thus m^{2} is even
- Thus m must be even (square of odd always odd)
- Thus $m=2 k$, or $n^{2} 2=(2 k)^{2}=4 k^{2}$
- Thus $n^{2}=2 k^{2}$
- Thus n must also be even
- But then both m and n must be even! Contradiction!
- Thus sqrt(2) cannot be rational
- (p.22)By Induction: useful to show that for all x in some ordered set $\mathrm{X}: \mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{k}}, \ldots \mathrm{P}(\mathrm{x})$ is true
- 3 step process
- Basis Step: prove $\mathrm{P}\left(\mathrm{x}_{1}\right)$ is true
- State the Induction Hypothesis: $P\left(x_{k}\right)=>P\left(x_{k+1}\right)$ for all k
- i.e. what we are trying to prove is that if we assume $P\left(x_{k}\right)$ is true, then $P\left(x_{k+1}\right)$ must also be true
- Induction Step: Prove Induction Hypothesis
- Typically by assuming $P\left(x_{k}\right)$ is true
- If induction step is proven true
- And we prove $P\left(x_{1}\right)$ is true
- Then $P\left(x_{2}\right)$ is true because $P\left(x_{1}\right)$ is
- Then $P\left(x_{3}\right)$ is true because $P\left(x_{4}\right)$ is
- Then ...
- Example $1+2+3+\ldots n=n(n+1) / 2$
- (p.24) example of mortgage calculation where
- $\mathrm{P}=$ original principal
- $t=$ number of months of loan
- $P_{t}=$ loan remaining after t months
- $\mathrm{M}=$ monthly interest rate percentage + 1
- $Y=$ monthly mortgage payment

