
1

Chap 1.1 – Finite Automata

• Automata: (Greek for “self-acting”) Device that

• Performs its actions at (usually fixed) periodic

intervals (Called a Clock)

• With the change to the next interval called a tick

• Accepts strings of input data one per tick

• Optionally generates an output one per tick

• Can be associated with either state or edge

• Carries over memory of the state of its computation

from tick to tick

• Follows a stored set of transition rules that

determines for each input & current state:

• what is new state, what is output

• State:

• Dictionary: “particular condition that something is in at a

specific time”

• For automata: Sum total of all information about

computation that may affect what it does next

• Corresponds to “memory”

• Example: p. 32 – automatic door opener

2

• (p. 35) Finite Automata (FA) a.k.a Finite State Machine

• Number of different states that system can be in is fixed

• Equivalent to a finite (and small) amount of memory

• Transition rules can only specify from one of these states

to another

• For now only one kind of output: “Yes” or “No”

• Alternatively “Accept” or “Reject”

• (p. 34). State Diagram: Graph representation of a FA

• One “labelled vertex” per state

• Label is name of state

• “Labelled Edge” represents a transition rule

• Source vertex is state FA is in before a tick

• Edge label is symbol that was on input

• Target vertex is state the FA goes into next

• If multiple transition rules go between same 2 states

• Draw just one edge

• With label = concatenation of all symbols from rules

• Start State: state FA is to be in when it is turned on

• Specified by an edge with no source

• Accepting State: when entered, outputs “yes”

• Double circle around state

• FA “accepts” or “rejects only when last input processed

3

• Deterministic Finite Automata (DFA): Exactly one transition

rule defined for each combination of state and input

• Nondeterministic Finite Automata (NDFA): (next class)

• More than 1 rule possible per state & input

• But only one taken at a time

• Which will be discussed later

• P. 33: Transition table D:

• 1 column for each possible input symbol

• 1 row for each possible state

• Contents of a cell of D: next state

• DFA Examples:

• (p. 32-33) has transition table

• (p. 32) has state diagram with start and accepting states

• (p. 36) Ex. 1.6 M1: (Figs. 1.4 & 1.6) accepts any string with

an even number of 0’s after the last 1 (where no 0s is an

even number)

4

• P. 35. Formal Definition of a FA M is a 5-tuple (Q, ∑, δ, q0, F)

• Q: finite set of states

• ∑: finite set of symbols called alphabet

• δ: Q x ∑ -> Q called transition function

• domain is pair of current_state and Current_input

• range is from Q (new_state)

• q0 ε Q designated as start state

• F ⊆ Q is set of accepting states

• P. 40 Formal Definition of a Computation:

• Given “machine” M = (Q, ∑, δ, q0, F)

• And w = w1w2 …wn a string from ∑

• M accepts w if w causes a sequence of n+1 states r0, r1, …

ri, ri+1, …rn

• r0 = q0,

• δ(ri, wi+1) = ri+1 for i = 0 to n-1

• rn ε F (key – in an accepting state after last input)

• M recognizes language A if

• A is a language over ∑ (i.e. A is a subset of ∑*)

• For all strings w in A, M accepts w

• For all strings w not in A, M does not accept w

5

• Examples of machines that recognize languages

• (p. 36) Ex. 1.7 M2: end in “1”

• (p. 38) Ex 1.9 M3: either empty or end with a “0”

• (p. 38) Ex 1.11 M4: start or end with “a”, or “b”

• (p. 39) Ex 1.13 M5: sum of inputs after a reset = 0 mod 3

• (p. 40) Ex 1.15 M6: sum of inputs after a reset = 0 mod i

• (p. 41-43) – tips for designing FAs

