Chap. 1.2 NonDeterministic Finite Automata (NFA)

- DFAs: exactly 1 new state for any state \& next char
- NFA: machine may not work "same" each time
- More than 1 transition rule for same state \& input
- Any one is valid
- Choice is made with "crystal ball" - which one will lead to an accepting state if possible
- Also $\underline{\varepsilon}$ (the empty string) is allowed on an edge:
- State transition can be made without reading any input characters
- See page 48 Fig. 1.27. two " 1 s " from $\mathrm{q}_{1} \& \varepsilon$ on $\mathrm{q}_{2}->\mathrm{q}_{3}$
- Accepts all strings from $\{0,1\}^{*}$ containing 101 or 11
- How does computation proceed? Assume at a step where multiple options are possible - a separate copy of the NFA is started up for each, and run in parallel
- All with the same starting state and remaining input
- Each takes a different edge
- Acceptance if any end up in an accepting state
- See Fig. 1.28 - note a " 1 " from q1 can go to q2 or (because of ε leaving q2) go to q3
- Ways to think of nondeterminism
- Parallel threads checking different paths
- Tree of possibilities
- NFA always "guesses" correctly (crystal ball)
- Examples
- (p.51) Ex. $1.30 \mathrm{~N}_{2}$: a " 1 " in third position from end - Nondeterminism is knowing when we are 3 symbols from end
- (p.52) Ex. $1.33 \mathrm{~N}_{3}$: 0^{k}, where k is multiple of 2 or 3
- ε edges lead to two different DFAs
- One that accepts strings of two 0s
- One that accepts strings of 30 s
- At start, crystal ball "knows" which it is
- (p.53) Ex. $1.35 \mathrm{~N}_{4}:\{\varepsilon, \mathrm{a}, \mathrm{bb}$, babba, ...\}
- (p.53) NFA Formal Definition: $N=(Q, \Sigma, \delta, q 0, F)$
- $\mathrm{Q}, \Sigma, \mathrm{q} 0$, and F are all as before
- $\delta: Q \times \Sigma_{\varepsilon}->P(\mathrm{Q})$
- $\Sigma_{\varepsilon}=\Sigma \mathrm{U}\{\varepsilon\}$ - epsilon-extended alphabet
- $P(Q)=$ power set of Q - set of all subsets of Q
- Thus each member of $P(Q)$ is a subset of Q
- N accepts $w\left(w\right.$ a string from Σ^{*}) if
- $\mathrm{w}=\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{m}}$ where $\mathrm{y}_{\mathrm{i}} \varepsilon \Sigma_{\varepsilon}$ (i.e. some may be " ε ")
- there exists a sequence of states $r_{0}, r_{1}, \ldots r_{m}$ where
- $r_{0}=q 0, r_{m} \varepsilon F$
- $r_{i+1} \varepsilon \delta\left(r_{i}, y_{i+1}\right)$
- p. 54: e.g. N_{1} accepts all strings containing 101 or 11
- Look at transition table - each transition is to a set of states
- Remember ϕ is "empty set"
- (p.55) Theorem Every NFA has an equivalent DFA.
- Proof by construction: given NFA, build matching DFA
- Basic idea: matching DFA has one state for every possible set of states that NFA can be in at any time
- Assume given NFA $N=(Q, \Sigma, \delta, q 0, F)$
- Build DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q 0^{\prime}, F^{\prime}\right)$
- Simple case first, if no ε rules in N
- $Q^{\prime}=P(Q)$
- $q 0^{\prime}=\{q 0\}$
- $F^{\prime}=\left\{R \mid R\right.$ in Q^{\prime}, R contains an accept state from $\left.F\right)$
- for each R in Q^{\prime}, and a in Σ :
- $\delta^{\prime}(R, a)=\{q \mid q$ in Q, for some r in $R, \delta(r, a)=q\}$
- Note: $\delta^{\prime}(R, a)$ can return empty set ϕ
- If there are ε rules in N : i.e. some $\delta(q, \varepsilon)->q^{\prime}$
- Define for any $R \varepsilon Q^{\prime}, E(R)=\{q \mid q \varepsilon Q$, q can be reached from some q^{\prime} in R via 0 or more ε edges $\}$
- $E(R)=$ " ε reachable states" from R in 0 or more ε
- Now $\delta^{\prime}(R, a)=\{q \mid q$ in Q, for some r in R, q in $E(\delta(r, a))\}$
- Also q0' = $\mathrm{E}(\{q 0\})$
- If NFA has $|Q|$ states, DFA has up to $2^{|Q|}$ states
- KEY RESULT: NFAs are no more powerful than DFAs!
- Just easier to design
- Example 1.41: p. 56 convert NFA N ${ }_{4}$ to DFA D
- $Q=\{1,2,3\}-$ states of N_{4}
- $P(Q)=\{\{ \},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- Each represents a possible state of D
- Compute E - states reachable by ε - of each state of Q^{\prime}
- $E(\{1\})=\{1,3\}-3$ because of ε from 1 to 3
- $E(\{2\})=\{2\}-$ no ε from 2
- $E(\{3\})=\{3\}$
- $E(\{1,2\})=\{1,2,3\}$
- $E\{\{1,3\})=\{1,3\}$
- $E(\{2,3\})=\{2,3\}$
- $E(\{1,2,3\})=\{1,2,3\}$
- Start state is E of N_{4} 's start state $1=\mathrm{E}(\{1\})=\{1,3\}$
- Accept states are those containing any of N_{4} 's F states (\{1\})
- $\{\{1\},\{1,2\},\{1,3\},\{1,2,3\}\}$
- See Fig. 1.43 p. 58
- Note no edges into $\{1\}$ or $\{1,2\}$ so could eliminate
- See Fig. 1.44 for reduced graph (no way to get to $\{1\}$ or \{1,2\}
- Details of Transitions in Fig. 1.43
- \{2\} in D
- input a: $\{2,3\}$ because N has a edge from 2 to 2 \& 3
- input b: $\{3\}$
- \{1\} in D
- input a: ϕ because no a's leave 1 in N
- input b: $\{2\}$ because b edge from 1 to 2 in N
- $\{3\}$ in D
- input a: $\{1,3\}$ because in N a edge from 3 to 1
- but also from 1 there's an ε edge back to 3
- input b: ϕ because no a's leave 3 in N
- $\{1,2\}$ in D
- input a: $\{2,3\}$ while 1 has no a edges, 2 does to $\{2,3\}$
- input b: $\{2,3\} \mathrm{N}$ has a b edge from 1 to 2
- and ab edge from 2 to 3
- $\{1,3\}$ in D
- input a: $\{1,3\}$ while 1 has no a edges,
- from 3 there is a edge to 1 , with an ε back to 3
- input b: $\{2\} \mathrm{N}$ has a b edge from 1 to 2
- but no b edges from 3
- $\{2,3\}$ in D
- input a: $\{1,2,3\}$ a edge from 2 to 2 ,
- from 3 there is a edge to 1 , with an ε back to 3
- input b: $\{3\} \mathrm{N}$ has a b edge from 2 to 3
- but no b edges from 3
- $\{1,2,3\}$ in D
- input a: $\{1,2,3\}$ no a edges from 1
- but a edge from 2 to 2 and 3
- from 3 there is a edge to 1 , with an ε back to 3
- input b: $\{2,3\} \mathrm{N}$ has a b edge from 1 to 2
- and b edge from 2 to 3
- Alternative from transition table
- N's original transition table:

State	a	b	ε	E (state)
1	$\}$	$\{2\}$	$\{3\}$	$\{1,3\}$
2	$\{2,3\}$	$\{3\}$	$\}$	$\{2\}$
3	$\{1\}$	$\}$	$\}$	$\{3\}$

- D's Transition Table

State	a	b
$\{1\}$	$E(\})=\{ \}$	$E(2)=\{2\}$
$\{2\}$	$E(2) \cup E(3)=\{2\} \cup\{3\}=\{2,3\}$	$E(3)=\{3\}$
$\{3\}$	$E(1)=\{1,3\}$	$E(\})=\{ \}$
$\{1,2\}$	$E(\}) \cup E(2) \cup E(3)=\{2,3\}$	$E(2) \cup E(3)=\{2,3\}$
$->\{1,3\}$	$E(1)=\{1,3\}$	$E(2) \cup E(\})=\{2\}$
$\{2,3\}$	$E(1) \cup E(2) \cup E(3)=\{1,2,3\}$	$E(3)=\{3\}$
$\{1,2,3\}$	$E(1) \cup E(2) \cup E(3)=\{1,2,3\}$	$E(2) \cup E(3)=\{2,3\}$
$\}$	$E(\})=\{ \}$	$E(\})=\{ \}$

- To E's that contain 1 in state, add 3 because of $\varepsilon 1->3$
- Each cell $\delta^{\prime}\left(q^{\prime}, x\right)$ is Union of $E(\delta(q, x))$ where q is in set q^{\prime}
- Red states are in D's final set
- $\{1,3\}$ is D's start state because its $E(1)$ where 1 is N's state

