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Chap. 1.2 NonDeterministic Finite Automata (NFA) 

• DFAs: exactly 1 new state for any state & next char 

• NFA: machine may not work “same” each time 

• More than 1 transition rule for same state & input 

• Any one is valid 

• Choice is made with “crystal ball” – which one will 

lead to an accepting state if possible 

• Also ε (the empty string) is allowed on an edge:  

• State transition can be made without reading any 

input characters 

• See page 48 Fig. 1.27. two “1s” from q1 & ε on q2->q3 

• Accepts all strings from {0,1}* containing 101 or 11 

• How does computation proceed? Assume at a step 

where multiple options are possible – a separate copy 

of the NFA is started up for each, and run in parallel 

• All with the same starting state and remaining input 

• Each takes a different edge 

• Acceptance if any end up in an accepting state 

• See Fig. 1.28 – note a “1” from q1 can go to q2 or 

(because of ε leaving q2) go to q3 
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• Ways to think of nondeterminism 

• Parallel threads checking different paths 

• Tree of possibilities 

• NFA always “guesses” correctly (crystal ball) 

• Examples 

• (p.51) Ex. 1.30 N2: a “1” in third position from end 

• Nondeterminism is knowing when we are 3 

symbols from end 

• (p.52) Ex. 1.33 N3: 0k, where k is multiple of 2 or 3 

• ε edges lead to two different DFAs 

• One that accepts strings of two 0s 

• One that accepts strings of 3 0s 

• At start, crystal ball “knows” which it is 

• (p.53) Ex. 1.35 N4: { ε, a, bb, babba, …} 
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• (p.53) NFA Formal Definition: N = (Q, ∑, δ, q0, F) 

• Q, Σ, q0, and F are all as before 

• δ: Q x Σε -> P(Q)  

• Σε = Σ U {ε} – epsilon-extended alphabet 

• P(Q) = power set of Q – set of all subsets of Q 

• Thus each member of P(Q) is a subset of Q 

• N accepts w (w a string from Σ*) if 

• w = y1y2 … ym where yi ε Σε (i.e. some may be “ε”) 

• there exists a sequence of states r0, r1, … rm where 

• r0 = q0, rm ε F 

• ri+1 ε δ(ri, yi+1) 

• p. 54: e.g. N1 accepts all strings containing 101 or 11 

• Look at transition table – each transition is to a set of 

states 

• Remember φ is “empty set”  

  



4 
 

• (p.55) Theorem Every NFA has an equivalent DFA.  

• Proof by construction: given NFA, build matching DFA 

• Basic idea: matching DFA has one state for every 

possible set of states that NFA can be in at any time 

• Assume given NFA N = (Q, ∑, δ, q0, F) 

• Build DFA M = (Q’, ∑, δ’, q0’, F’) 

• Simple case first, if no ε rules in N 

• Q’ = P(Q) 

• q0’ = {q0} 

• F’ = {R| R in Q’, R contains an accept state from F) 

• for each R in Q’, and a in Σ: 

• δ’(R, a) = {q|q in Q, for some r in R, δ(r,a)=q} 

• Note: δ’(R, a) can return empty set ɸ 

• If there are ε rules in N: i.e. some δ(q, ε) -> q’ 

• Define for any RεQ’, E(R) = {q|q ε Q, q can be reached 

from some q’ in R via 0 or more ε edges}  

• E(R) = “ε reachable states” from R in 0 or more ε  

• Now δ’(R, a) = {q|q in Q, for some r in R, q in E(δ(r,a))} 

• Also q0’ = E({q0})  

• If NFA has |Q| states, DFA has up to 2|Q| states 

• KEY RESULT: NFAs are no more powerful than DFAs! 

• Just easier to design 
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• Example 1.41: p. 56 convert NFA N4 to DFA D 

• Q = {1,2,3} – states of N4 

• P(Q) = {{},{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} 

• Each represents a possible state of D 

• Compute E - states reachable by ε - of each state of Q’ 

• E({1}) = {1,3} – 3 because of ε from 1 to 3 

• E({2}) = {2} – no ε from 2 

• E({3}) = {3} 

• E({1,2}) = {1,2,3} 

• E{{1,3}) = {1,3} 

• E({2,3}) = {2,3} 

• E({1,2,3}) = {1,2,3} 

• Start state is E of N4’s start state 1 = E({1}) = {1,3} 

• Accept states are those containing any of N4’s F states  ({1}) 

• {{1}, {1,2}, {1,3}, {1,2,3}} 

• See Fig. 1.43 p. 58 

• Note no edges into {1} or {1,2} so could eliminate 

• See Fig. 1.44 for reduced graph (no way to get to {1} or 

{1,2} 
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• Details of Transitions in Fig. 1.43 

• {2} in D 

• input a: {2,3} because N has a edge from 2 to 2 & 3 

• input b: {3} 

• {1} in D 

• input a: ɸ because no a’s leave 1 in N 

• input b: {2} because b edge from 1 to 2 in N 

• {3} in D 

• input a: {1,3} because in N a edge from 3 to 1 

• but also from 1 there’s an ε edge back to 3 

• input b: ɸ because no a’s leave 3 in N 

• {1,2} in D 

• input a: {2,3} while 1 has no a edges, 2 does to {2,3} 

• input b: {2,3} N has a b edge from 1 to 2 

• and a b edge from 2 to 3 

• {1,3} in D 

• input a: {1, 3} while 1 has no a edges,  

• from 3 there is a edge to 1, with an ε back to 3 

• input b: {2} N has a b edge from 1 to 2 

• but no b edges from 3 

• {2,3} in D 

• input a: {1, 2, 3} a edge from 2 to 2,  

• from 3 there is a edge to 1, with an ε back to 3 

• input b: {3} N has a b edge from 2 to 3 

• but no b edges from 3 

• {1,2,3} in D 

• input a: {1, 2, 3} no a edges from 1 

• but a edge from 2 to 2 and 3  

• from 3 there is a edge to 1, with an ε back to 3 

• input b: {2,3} N has a b edge from 1 to 2 

• and b edge from 2 to 3 
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• Alternative from transition table 

• N’s original transition table: 

State a b ε E(state) 
1 {} {2} {3} {1,3} 
2 {2,3} {3} {} {2} 
3 {1} {} {} {3} 

• D’s Transition Table 

State a b 
{1} E({}) = {} E(2) = {2} 
{2} E(2)UE(3) = {2}U{3}={2,3} E(3) = {3} 
{3} E(1) = {1,3} E({}) = {} 

{1,2} E({}) U E(2) U E(3) = {2,3} E(2) U E(3) = {2,3} 
->{1,3} E(1) = {1,3} E(2) U E({}) = {2} 
{2,3} E(1) U E(2) U E(3) = {1,2,3} E(3) = {3} 

{1,2,3} E(1) U E(2) U E(3) = {1,2,3} E(2) U E(3) = {2,3} 
{} E({}) = {} E({}) = {} 

• To E’s that contain 1 in state, add 3 because of ε 1->3 

• Each cell δ’(q’,x) is Union of E(δ(q,x)) where q is in set q’ 

• Red states are in D’s final set 

• {1,3} is D’s start state because its E(1) where 1 is N’s state 

 


