Section 1.3 Regular Expressions

- Sample syntax for numbers

D -> $0|1| 2|3| 4|5| 6|7| 8 \mid 9$
<unsigned-number> -> D+
<unsigned-fraction> -> <unsigned-number> |
<unsigned-number>.\{<unsigned-number>\} |
<number> -> \{+ -\}<unsigned-fraction>

- Sample syntax for describing arithmetic expressions:
<op1> -> + | -
<op2> ->* | /
<factor>-> <number> | (<arith-expr>)
<term> -> <factor> | <term> <op2> <factor>
< arith-expr > -> <term> | < arith-expr > <op1> <term>
- Notice this defines a precedence for operators:
- Do inside () first
- Do * or / first before + or -
- Do + or - last
- (p. 64) Describing regular expressions (regex) R <r-symbol>-> $\phi|\varepsilon| \ldots$ any member of $\sum \ldots$

Notes:
ε is language with a single string - the empty string ϕ is the language with no strings
\sum stands for any character in the alphabet
<r-factor> -> <r-symbol> | (<r-expr>) | <r-factor>*
<r-term> -> <r-factor> | <r-term> $0<r$-factor>
<r-expr> -> <r-term> | <r-expr> U <r-factor>

- Precedence rules
- Do inside () first
- Do * first, then ${ }^{\circ}$, then U
- R^{+}shorthand for RR^{*}
- $\quad \Sigma$ is thus equivalent to $\left(a_{1} \cup a_{2} \cup \ldots\right)$ where a_{i} is a symbol in Σ
- $L(R)$ stands for the language generated by the regular expression R
- Examples p. 65
- (p. 66) Identities: for all R
- $R \cup \phi=R$. Adding empty language to any other does not change it
- $R \circ \varepsilon=R$. Concatenating the empty string does not change R
- (p. 66) Non-identities
- $\mathrm{R} U \varepsilon$ may be different from R .
- E.g. $R=0$ so $L(R)=\{0\}$, but $L(R U \varepsilon)=\{0, \varepsilon\}$
- $R \circ \phi$ may be different from R.
- E.g. $R=0$ so $L(R)=\{0\}$, but $L(R \circ \phi)=\phi$
- There are no strings to concatenate on right
- (p.66) Regex for <number> as defined above
- $D=\{0,1,2,3,4,5,6,7,8,9\}$
- $(+U-U \varepsilon)\left(D^{+} U D^{+} . D^{*} U D^{*} . D^{+}\right)$
- (p.66-67) Theorem 1.54. A language is regular iff some regular expression describes it
- (p. 67) If L is described by a regex, then it is regular
- Proof by construction: given regex construct an NFA
- See p. 67 for 6 cases and how to build their NFAs
- Examples p.68, 69
- (p70) To prove other way need Generalized NFAs (GNFA)
- NFA where edges may have arbitrary regex on them
- We know that any regex can be converted into an NFA
- Thus could replace each such edge with a small NFA
- Start state as transitions to every other state but no incoming
- Only one accept state with transitions incoming from all others but no outgoing
- Start and accept states must be different
- Except for start and accept, transition from every state to every other state, including a self-loop
- (p .73) Formal Definition of GNFA ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\text {start }}$, $\mathrm{q}_{\text {accept }}$)
- $\delta:\left(Q-\left\{q_{\text {accept }}\right\}\right) \times\left(Q-\left\{q_{\text {start }}\right\}\right)->R$, where R is all regex over Σ
- GNFA accepts w if $w=w_{1} \ldots w_{k}$ where each w_{i} is string from Σ^{*}
- and sequence of states $q 0, \ldots q k$ such that
- $q 0=q_{\text {start }}, q k=q_{\text {final }}$
- $w_{i} \varepsilon L\left(R_{i}\right)$ where $R_{i}=\delta\left(q_{i-1}, q_{i}\right)$ (i.e. the label on the edge)
- (p. 71) Any DFA can be converted into GNFA
- Add new start state with ε transition to old start
- Add new final state with ε from all old final states
- If edge has multiple labels
- Replace by single edge with label = U of prior labels
- Add edge with ϕ between any states without an edge
- See Fig. 1-61: do conversion on paper to bigger NFA
- (p.69) Lemma 1.60 If A is regular, then describable by regex
- (p. 73) Proof by converting DFA M for A into GNFA G
- With $\mathrm{k}=$ \# states in G
- Then modify GNFA as follows
- If $k=2$ then GNFA must have $q_{\text {start }}$ and $q_{\text {accept }}$ and edge between them is desired regex
- If $k>2$, repeat until $k=2$: convert G into G^{\prime}
- Select any start $\mathrm{q}_{\text {rip }}$ other than $\mathrm{q}_{\text {start }}$ and $\mathrm{q}_{\text {accept }}$
- Define G^{\prime} be GNFA where $\mathrm{Q}^{\prime}=\mathrm{Q}-\left\{\mathrm{q}_{\text {rip }}\right\}$
- For each q_{i} in $Q^{\prime}-q_{\text {start }}$ and q_{j} in $Q^{\prime}-\left\{q_{\text {accept }}\right\}$
- $\delta^{\prime}\left(q_{i}, q_{j}\right)=(R 1)(R 2) *(R 3) \cup(R 4)$ where
- $R 1=\delta\left(q_{i}, q_{\text {rip }}\right)$ (label on edge from q_{i} to $q_{\text {rip }}$)
- $R 2=\delta\left(q_{\text {rip }}, q_{\text {rip }}\right)$ (label on edge on self loop $\left.q_{\text {rip }}\right)$
- $R 3=\delta\left(q_{r i p}, q_{j}\right)$ (label on edge from $q_{\text {rip }}$ to $\left.q_{j}\right)$)
- $R 4=\delta\left(q_{i}, q_{j}\right)$ (original label on edge from q_{i} to $\left.q_{j}\right)$
- Eg. p. 75,76

