Section 1.3 Regular Expressions

- Sample syntax for numbers

 D -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 <unsigned-number> -> D+
 <unsigned-fraction> -> <unsigned-number> |
 <unsigned-number>.{<unsigned-number> |
 <unsigned-number>.{<unsigned-number>} |
- Sample syntax for describing arithmetic expressions:
 <op1> -> + | -

<op2> -> * | /

- <factor> -> <number> | (<arith-expr>)
- <term> -> <factor> | <term> <op2> <factor>
- < arith-expr > -> <term> | < arith-expr > <op1> <term>
- Notice this defines a precedence for operators:
 - Do inside () first
 - Do * or / first before + or -
 - Do + or last

(p. 64) Describing regular expressions (regex) R
 <r-symbol> -> φ | ε | ... any member of ∑ ...

Notes:

 ϵ is language with a <u>single</u> string – the empty string

 φ is the language with <u>no</u> strings

```
∑ stands for any character in the alphabet
<r-factor> -> <r-symbol> | ( <r-expr> ) | <r-factor>*
<r-term> -> <r-factor> | <r-term> ∘ <r-factor>
```

```
<r-expr> -> <r-term> | <r-expr> U <r-factor>
```

- Precedence rules
 - Do inside () first
 - Do * first, then °, then U
- R⁺ shorthand for RR^{*}
- Σ is thus equivalent to (a₁ U a₂ U ...) where a_i is a symbol in Σ
- L(R) stands for the language generated by the regular expression R

- Examples p. 65
- (p. 66) Identities: for all R
 - R U φ = R. Adding empty language to any other does not change it
 - $R \circ \epsilon = R$. Concatenating the empty string does not change R
- (p. 66) Non-identities
 - R U ϵ may be different from R.
 - E.g. R = 0 so L(R) = {0}, but L(R U ε) = {0, ε}
 - $R \circ \phi$ may be different from R.
 - E.g. R = 0 so $L(R) = \{0\}$, but $L(R \circ \varphi) = \varphi$
 - There are no strings to concatenate on right
- (p.66) Regex for <number> as defined above
 - D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - $(+ U U \epsilon) (D^+ U D^+.D^* U D^*.D^+)$

- (p.66-67) **Theorem 1.54**. A language is regular iff some regular expression describes it
 - (p. 67) If L is described by a regex, then it is regular
 - Proof by construction: given regex construct an NFA
 - See p. 67 for 6 cases and how to build their NFAs
 - Examples p. 68, 69
- (p70) To prove other way need **Generalized NFAs (GNFA**)
 - NFA where edges may have arbitrary regex on them
 - We know that any regex can be converted into an NFA
 - Thus could replace each such edge with a small NFA
 - Start state as transitions to every other state but no incoming
 - Only one accept state with transitions incoming from all others but no outgoing
 - Start and accept states must be different
 - Except for start and accept, transition from every state to every other state, including a self-loop
 - (p. 73) Formal Definition of GNFA (Q, \sum , δ , q_{start} , q_{accept})
 - δ : (Q-{q_{accept}}) x (Q-{q_{start}}) -> R, where R is all regex over Σ
 - GNFA accepts w if $w=w_1...w_k$ where each w_i is string from Σ^*
 - and sequence of states q0,...qk such that
 - $q0 = q_{start}$, $qk = q_{final}$
 - $w_i \in L(R_i)$ where $R_i = \delta(q_{i-1}, q_i)$ (i.e. the label on the edge)

- (p. 71) Any DFA can be converted into GNFA
 - Add new start state with $\boldsymbol{\epsilon}$ transition to old start
 - Add new final state with ϵ from all old final states
 - If edge has multiple labels
 - Replace by single edge with label = U of prior labels
 - Add edge with φ between any states without an edge
 - See Fig. 1-61: do conversion on paper to bigger NFA
- (p. 69) Lemma 1.60 If A is regular, then describable by regex
 - (p. 73) Proof by converting DFA M for A into GNFA G
 - With k = # states in G
 - Then modify GNFA as follows
 - If k=2 then GNFA must have q_{start} and q_{accept} and edge between them is desired regex
 - If k>2, repeat until k=2: convert G into G'
 - Select any start q_{rip} other than q_{start} and q_{accept}
 - Define G' be GNFA where $Q' = Q \{q_{rip}\}$
 - For each q_i in Q' q_{start} and q_j in $Q' \{q_{accept}\}$
 - $\delta'(q_i, q_j) = (R1)(R2)^*(R3) U (R4)$ where
 - $R1 = \delta(q_i, q_{rip})$ (label on edge from q_i to q_{rip})
 - $R2 = \delta(q_{rip}, q_{rip})$ (label on edge on self loop q_{rip})
 - R3 = $\delta(q_{rip}, q_j)$ (label on edge from q_{rip} to q_j))
 - $R4 = \delta(q_i, q_j)$ (original label on edge from q_i to q_j)
 - Eg. p. 75,76