Sec. 1.4 (pp. 77-81). Nonregular Languages

- Consider the following regular languages (show regex and NFA/DFA, count # of states)
 - {(01)ⁿ | n≥0}
 - {0ⁿ1^m | n≥0, m≥0}
 - { $0^k 1^k | 0 \le k \le n$, for some fixed n}
 - {w | w has equal # of 01 and 10 substrings} is regular (see Prob. 1.48)
- If a language is finite, is it always regular? YES
- Now is {0ⁿ1ⁿ | n≥0} regular?
- Not all languages are regular (i.e. not all recognizable by some FA or expressible as a regex)
 - Need to "count & remember" some transition
 - But no way to count to an arbitrarily large number
 - C = {w | w has equal # 0s and 1s} also not regular
 - Again have to "count"

- How to show some languages non-regular?
- Observation: If the set of strings L is infinite & regular
 - Then matching regex must have at least one "*" or "+"
 - I.e. R_xR_y*R_z where R_x, R_y, R_z all smaller regexs
 - E.g .L = ac (bb U aa)* ca
 - acbbca is in L
 - but so is acca, acbbbbca, acbbbbbbca,
 - i.e. there are an infinite number of strings of the form ac(bb)ⁿca for all n≥0 <u>also in L</u>!
 - In general (with caveats) if w is in L, there is some w=xyz so that for all n, so is xyⁿz
 - So in general if we find one string we know is in L
 - Then an infinite number of other strings also in L
- Why is this useful? Assume want to show L is NOT regular
 - Proof by contradiction: Assume L IS regular
 - Find a string w known to be in L
 - Look at <u>all possible ways</u> of dividing into w=xyz
 - x from some R_x, y from some R_y, z from some R_z
 - In each case show for some k, xy^kz is not in L
 - Contradiction! Assumption that L is regular is FALSE
 - Thus L cannot be a regular language

- (p. 78) **PUMPING LEMMA**. If A is regular, then
 - There is some number <u>p</u> (called the **pumping length**)
 - Where if s is any string in A whose length $\geq p$
 - Then s can be divided <u>somehow</u> into <u>3 pieces</u> s= xyz
 - |y| > 0, (i.e. y cannot be ε)
 - $|xy| \le p$, (note either x or y or both may be ε)

For any i≥0, then xyⁱz is also in A

- What this means: If L is regular language of infinite size
 - L has associated with it some string length p
 - Such that if you take *any* string w from L where $|w| \ge p$
 - Then you can *always* write w as concatenation w = xyz for *some* strings x, y, and z (i.e. at least one)
 - Such that the strings xz, xyz, xyyz, xyyyz, ... xyⁱz all in L
 - Note: finite languages cannot be pumped
 - Example: {ade, abcde, abcbcde, ...}
 - Regex = a(bc)*de
 - GNFA equivalent has 3 states
 - p=4, x=a, y=bc, z=de
 - Easiest to see the y in a DFA loop, or "*" in the regex

- What this means: If <u>L is not regular</u>, then L d<u>oes not</u> <u>obey</u> the pumping lemma
 - Can use pumping lemma in a **proof by contradiction** to show language is not regular
 - Assume L is regular
 - Then there must exist some p (we don't need to know exact value)
 - Show that there is <u>always</u> some string w in L, |w|≥p, that <u>cannot be pumped</u>, regardless of how we partition it into some xyz
 - Need find ONLY ONE SUCH STRING
 - Thus assumption is false and L not regular

- (p. 78) Proof in outline:
 - Assume M = (Q, Σ , , q₁, δ , F) accepts A
 - Assume p = # of states in M
 - $Q = \{q_1, q_2, ..., q_p\}$
 - If no string in A is \geq p, then theorem obviously true
 - Assume $s = s_1s_2 \dots s_n$, $n \ge p$ (n is # of characters in string)
 - Then state sequence must be (r₀, r₁, r_n) (see fig. 1.72)
 - where $r_0 = q_1$
 - and $\delta(r_{i-1}, s_i) = r_i$
 - But since $n \ge p$, then n+1 > p
 - But since only p states, we must have <u>repeated</u> n+1-p states
 - Assume r_j is 1st state that is repeated
 - s_{j+1} is 1st character to cause leaving r_j
 - Assume s_l is 1st character that causes re-entry to state r_j
 - Since we are back at r_j, we could repeat **s**_{j+1} ... **s**_l forever
 - i.e. $S_{l+1} = S_{j+1}$, $S_{l+2} = S_{j+2}$... $S_{l+1} = S_l$
 - The substring s_{j+1} ... s_l (of length l-j) is thus y
 - We could keep repeating s_{j+1} ... s_l arbitrarily often and still end up at r_j − i.e. (s_{j+1} ... s_l)ⁱ for i≥0
 - And $x = s_1 s_2 \dots s_j$, $z = s_{j+i(l-j)} \dots s_n$,
 - Either/both x and z could be ε

- Use lemma to show B not regular by contradiction
 - Assume B regular
 - Thus there is some p such that *all strings* of length ≥ p can be pumped
 - Find a string s in B that is $\geq p$, but cannot be pumped
 - Look at all possible ways to divide string into xyz
 - For each way find an i such that xyⁱz not in B
 - When found, we have a contradiction!
 - Thus B is NOT regular
- Examples
 - P.80: B = $\{0^n 1^n | n \ge 0\}$
 - Look at 3 cases of substrings: all 0s, ..01.., all 1s
 - P.80: C = {w | w has equal # of 0's and 1s}
 - Look at s = 0^p1^p
 - P.81: F = {ww| w in {0,1}*}
 - Look at s = 0^p10^p1
 - P.82: D = $\{1^{n^2} | n \ge 0\}$
 - Look at s = 1^{p^2}
 - P. 82: E = {0ⁱ1^j | i>j}
 - Look at s = 0^{p+1}1^p
- Also look at problems 1.53-1.58

Summary: Applying Pumping Lemma

- The Lemma: If L is regular and infinite, then
 - There is guaranteed to be some integer p such that
 - If you look at **ANY string s** where |s|≥p
 - You can *always find at least one partitioning* s=xyz where
 - $|y| \ge 1$ and $|xy| \le p$
 - AND xyⁱz is also in L *FOR ALL i≥0* (we are "pumping" the string)
- How to apply: To show that L IS NOT Regular
 - Assume L IS regular
 - You only need find <u>one string s in L</u>, |s|≥p, that **does not pump**
 - Choose a string where you can easily identify:
 - What are all the possible values of xy
 - And you can id what y is for any of these
 - Work thru all possible xy strings partitions
 - There are at most p*(p-1) of them:
 - Show that *each possibility* has <u>at least one</u> i where xyⁱz does not belong to L
- **Example**: $\{0^n 1^n | n \ge 0\}$
 - If we choose $0^p 1^p$ then we know
 - xy must be all 0s
 - And thus y must be one or more 0s and no 1s
 - And z holds all p 1s (and perhaps some 0s from the end of the 1st half)
 - Now *regardless of what xy actually is* (need only find one value of i)
 - i=0 removes just 0s from the string and thus # of 0s is less than # of 1s, AND thus xy⁰z IS NOT IN L
 - Alternatively if we choose i=2, then we "add" more 0s to the string and thus more 0s than 1s, AND thus xy²z IS NOT IN L
 - Thus we have found a string that does not pump, and THUS L CANNOT BE REGULAR