Sec. 1.4 (pp. 77-81). Nonregular Languages

- Consider the following regular languages (show regex and NFA/DFA, count \# of states)
- $\left\{(01)^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$
- $\left\{0^{n} 1^{m} \mid n \geq 0, m \geq 0\right\}$
- $\left\{0^{k} 1^{k} \mid 0 \leq k \leq n\right.$, for some fixed $\left.n\right\}$
- \{w|w has equal \# of 01 and 10 substrings is regular (see Prob. 1.48)
- If a language is finite, is it always regular? YES
- Now is $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ regular?
- Not all languages are regular (i.e. not all recognizable by some FA or expressible as a regex)
- Need to "count \& remember" some transition
- But no way to count to an arbitrarily large number
- $C=\{w \mid w$ has equal \# 0s and 1s $\}$ also not regular
- Again have to "count"
- How to show some languages non-regular?
- Observation: If the set of strings L is infinite \& regular
- Then matching regex must have at least one "*" or " + "
- I.e. $R_{x} R_{y}{ }^{*} R_{z}$ where R_{x}, R_{y}, R_{z} all smaller regexs
- E.g.L= ac (bbUaa)* ca
- acbbca is in L
- but so is acca, acbbbbca, acbbbbbbca,
- i.e. there are an infinite number of strings of the form $a c(b b)^{n}$ ca for all $n \geq 0$ also in L!
- In general (with caveats) if w is in L, there is some $w=x y z$ so that for all n, so is $x y^{n} z$
- So in general if we find one string we know is in L
- Then an infinite number of other strings also in L
- Why is this useful? Assume want to show L is NOT regular
- Proof by contradiction: Assume L IS regular
- Find a string w known to be in L
- Look at all possible ways of dividing into $w=x y z$
- x from some R_{x}, y from some R_{y}, z from some R_{z}
- In each case show for some $k, x y^{k} z$ is not in L
- Contradiction! Assumption that L is regular is FALSE
- Thus L cannot be a regular language
- (p. 78) PUMPING LEMMA. If A is regular, then
- There is some number \underline{p} (called the pumping length)
- Where if s is any string in A whose length $\geq p$
- Then s can be divided somehow into $\mathbf{3}$ pieces $s=x y z$
- $|y|>0$, (i.e. y cannot be ε)
- $|x y| \leq p$, (note either x or y or both may be ε)
- For any $i \geq 0$, then $x y^{i} z$ is also in A
- What this means: If L is regular language of infinite size
- L has associated with it some string length p
- Such that if you take any string w from L where $|w| \geq p$
- Then you can always write w as concatenation $w=x y z$ for some strings x, y, and z (i.e. at least one)
- Such that the strings xz, xyz, xyyz, xyyyz, ... xy'z all in L
- Note: finite languages cannot be pumped
- Example: \{ade, abcde, abcbcde, ...\}
- Regex = a(bc)*de
- GNFA equivalent has 3 states
- $p=4, x=a, y=b c, z=d e$
- Easiest to see the y in a DFA loop, or "*" in the regex
- What this means: If \underline{L} is not regular, then L does not obey the pumping lemma
- Can use pumping lemma in a proof by contradiction to show language is not regular
- Assume L is regular
- Then there must exist some p (we don't need to know exact value)
- Show that there is always some string win $L,|w| \geq p$, that cannot be pumped, regardless of how we partition it into some xyz
- Need find ONLY ONE SUCH STRING
- Thus assumption is false and L not regular
- (p. 78) Proof in outline:
- Assume $M=\left(Q, \Sigma_{1}, q_{1}, \delta, F\right)$ accepts A
- Assume $\mathrm{p}=\#$ of states in M
- $Q=\left\{q_{1}, q_{2}, \ldots q_{p}\right\}$
- If no string in A is $\geq p$, then theorem obviously true
- Assume $s=s_{1} s_{2} \ldots s_{n}, n \geq p$ (n is \# of characters in string)
- Then state sequence must be ($r_{0}, r_{1}, \ldots . r_{n}$) (see fig. 1.72)
- where $r_{0}=q_{1}$
- and $\delta\left(r_{i-1}, s_{i}\right)=r_{i}$
- But since $n \geq p$, then $n+1>p$
- But since only p states, we must have repeated $n+1-p$ states
- Assume r_{j} is $1^{\text {st }}$ state that is repeated
- s_{j+1} is $1^{\text {st }}$ character to cause leaving r_{j}
- Assume s_{1} is $1^{\text {st }}$ character that causes re-entry to state r_{j}
- Since we are back at r_{j}, we could repeat \mathbf{s}_{j+1}... $\mathbf{s}_{\mathbf{I}}$ forever
- i.e. $s_{l+1}=s_{j+1}, s_{l+2}=s_{j+2} \ldots s_{l+1}=s_{l}$
- The substring $s_{j+1} \ldots s_{l}$ (of length $l-j$) is thus y
- We could keep repeating $s_{j+1} \ldots s_{l}$ arbitrarily often and still end up at $r_{j}-i . e .\left(s_{j+1} \ldots s_{1}\right)^{i}$ for $i \geq 0$
- And $x=s_{1} s_{2} \ldots s_{j}, z=s_{j+i(l-j)} \ldots s_{n}$,
- Either/both x and z could be ε
- Use lemma to show B not regular - by contradiction
- Assume B regular
- Thus there is some p such that all strings of length $\geq p$ can be pumped
- Find a string s in B that is $\geq p$, but cannot be pumped
- Look at all possible ways to divide string into xyz
- For each way find an i such that xyiz not in B
- When found, we have a contradiction!
- Thus B is NOT regular
- Examples
- P.80: $B=\left\{0^{n} 1^{n} \mid n \geq 0\right)$
- Look at 3 cases of substrings: all 0s, ..01.., all 1s
- P.80: $C=\{w \mid w$ has equal \# of 0 's and 1 s$\}$
- Look at $\mathrm{s}=0^{\mathrm{p}} 1^{\mathrm{p}}$
- P.81: $F=\left\{w w \mid w\right.$ in $\left.\{0,1\}^{*}\right\}$
- Look at $s=0^{p} 10^{p} 1$
- P.82: $D=\left\{1^{n^{\wedge} 2} \mid n \geq 0\right\}$
- Look at $\mathrm{s}=1^{\mathrm{p}^{\wedge} 2}$
- P. 82: $E=\left\{0^{i} 1^{j} \mid i>j\right\}$
- Look at $\mathrm{s}=0^{\mathrm{p}+1} 1^{\mathrm{p}}$
- Also look at problems 1.53-1.58

Summary: Applying Pumping Lemma

- The Lemma: If L is regular and infinite, then
- There is guaranteed to be some integer p such that
- If you look at ANY string s where $|s| \geq p$
- You can always find at least one partitioning $\mathrm{s}=\mathrm{xyz}$ where
- $|y| \geq 1$ and $|x y| \leq p$
- AND xy'z is also in L FOR ALL $i \geq 0$ (we are "pumping" the string)
- How to apply: To show that L IS NOT Regular
- Assume LIS regular
- You only need find one string s in $\mathrm{L},|\mathrm{s}| \geq \mathrm{p}$, that does not pump
- Choose a string where you can easily identify:
- What are all the possible values of $x y$
- And you can id what y is for any of these
- Work thru all possible xy strings partitions
- There are at most $\mathrm{p}^{*}(\mathrm{p}-1)$ of them:
- Show that each possibility has at least one i where $\mathrm{xy}^{i} \mathrm{z}$ does not belong to L
- Example: $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- If we choose $0^{\mathrm{p}} 1^{\mathrm{p}}$ then we know
- xy must be all Os
- And thus y must be one or more 0 s and no 1 s
- And z holds all p 1s (and perhaps some $0 s$ from the end of the $1^{\text {st }}$ half)
- Now regardless of what xy actually is (need only find one value of i)
- $\mathrm{i}=0$ removes just 0 s from the string and thus \# of 0 s is less than \# of 1 s , AND thus $x y^{0} z$ IS NOT IN L
- Alternatively if we choose $i=2$, then we "add" more 0 s to the string and thus more 0s than 1s, AND thus $x y^{2} z$ IS NOT IN L
- Thus we have found a string that does not pump, and THUS L CANNOT BE REGULAR

