Sec. 1.4 (pp. 77-81). **Nonregular Languages**

- Not all languages are regular (i.e. not all recognizable by some FA or expressible as a regex)
 - Consider $B = \{0^n1^n \mid n \geq 0\}$
 - Need to “remember n” when we see 01 transition
 - But no way to count to an arbitrarily large number
 - $C = \{w \mid w$ has equal # 0s and 1s$\}$ also not regular
 - Again have to “count”
 - However, $D = \{w \mid w$ has equal # of 01 and 10 substrings$\}$ is regular (see Prob. 1.48)
• How to show some languages non-regular?
• Observation: If the set of strings L is infinite & regular
 • Then matching regex must have at least one “*” or “+”
 • I.e. $R_xR_y*R_z$ where R_x, R_y, R_z all smaller regexs
 • E.g. $L = ac (bb U aa)^* ca$
 • acbbca is in L
 • but so is acca, acbbbbca, acbbbbbbca,
 • i.e. there are an infinite number of strings of the form $ac(bb)^nca$ for all $n\geq 0$ also in L!
 • In general (with caveats) if w is in L, there is some $w=xyz$ so that for all n, so is xy^nz
• So in general if we find one string we know is in L
• Then an infinite number of other strings also in L
• Why is this useful? Assume want to show L is NOT regular
 • Proof by contradiction: Assume L IS regular
 • Find a string w known to be in L
 • Look at all possible ways of dividing into $w=xyz$
 • x from some R_x, y from some R_y, z from some R_z
 • In each case show for some k, xy^kz is not in L
 • Contradiction! Assumption that L is regular is FALSE
• Thus L cannot be a regular language
(p. 78) **PUMPING LEMMA.** If A is regular, then
- There is some number \(p \) (called the **pumping length**)
- Where if \(s \) is any string in A whose length \(\geq p \)
- **Then \(s \) can be divided somehow into 3 pieces** \(s = xyz \)
 - \(|y| > 0\), (i.e. \(y \) cannot be \(\varepsilon \))
 - \(|xy| \leq p\), (note either \(x \) or \(y \) or both may be \(\varepsilon \))
- **For any \(i \geq 0 \), then \(xy^iz \) is also in A**
- What this means: If L is regular language of infinite size
 - L has associated with it some string length \(p \)
 - Such that if you take any string \(w \) from L where \(|w| \geq p\)
 - Then you can *always* write \(w \) as concatenation \(w = xyz \)
 for some strings \(x, y, \) and \(z \) (i.e. at least one)
 - Such that the strings \(xz, xyz, xyyz, xyyyyz, \ldots \) \(xy^i z \) all in L
- Note: finite languages cannot be pumped
- Example: \{ade, abcde, abcabcde, \ldots\}
 - Regex = \(a(bc)^*de \)
 - GNFA equivalent has 3 states
 - \(p=4, x=a, y=bc, z=de \)
 - Easiest to see the \(y \) in a DFA loop, or “*” in the regex
• What this means: If L is not regular, then L does not obey the pumping lemma
• Can use pumping lemma in a proof by contradiction to show language is not regular
 • Assume L is regular
 • Then there must exist some p (we don’t need to know exact value)
 • Show that there is always some string w in L, |w| ≥ p, that cannot be pumped, regardless of how we partition it into some xyz
 • Need find ONLY ONE SUCH STRING
 • Thus assumption is false and L not regular
(p. 78) Proof in outline:
- Assume M = (Q, Σ, , q_1, δ, F) accepts A
- Assume p = # of states in M
 - Q = \{q_1, q_2, ..., q_p\}
- If no string in A is \geq p, then theorem obviously true
- Assume s = s_1s_2 ... s_n, n \geq p (n is # of characters in string)
- Then state sequence must be (r_0, r_1, r_n) (see fig. 1.72)
 - where r_0 = q_1
 - and δ(r_{i-1}, s_i) = r_i
- But since n \geq p, then n+1 > p
 - But since only p states, we must have repeated n+1-p states
- Assume r_j is 1^{st} state that is repeated
 - s_{j+1} is 1^{st} character to cause leaving r_j
- Also assume s_k is 1^{st} character that causes re-entry to state r_j
- Since we are back at r_j, we could repeat s_{j+1} ... s_k forever
- The substring s_{j+1} ... s_k is thus y
 - We could keep repeating s_{ij+1} ... s_k arbitrarily often and still end up at r_j – i.e. (s_{ij+1} ... s_k)^i for i\geq0
- And x = s_1s_2 ... s_j , z = s_{k+1} ... s_n,
- Either/both x and z could be ε

5
• Use lemma to show B not regular – by contradiction
 • Assume B regular
 • Thus there is some p such that all strings of length ≥ p can be pumped
 • Find a string s in B that is ≥ p, but cannot be pumped
 • Look at all possible ways to divide string into xyz
 • For each way find an i such that xy^i z not in B
 • When found, we have a contradiction!
 • Thus B is NOT regular

• Examples
 • P.80: B =\{0^n1^n | n ≥ 0\}
 • Look at 3 cases of substrings: all 0s, ..01.., all 1s
 • P.80: C = \{w | w has equal # of 0’s and 1s\}
 • Look at \(s = 0^p1^p\)
 • P.81: F = \{ww | w in \{0,1\}^*\}
 • Look at \(s = 0^p1^p1\)
 • P.82: D = \{1^{n^2} | n ≥ 0\}
 • Look at \(s = 1^{p^2}\)
 • P. 82: E = \{0^i1^j | i>j\}
 • Look at \(s = 0^{p+1}1^p\)
 • Also look at problems 1.53-1.58