Sec. 1.4 (pp. 77-81). Nonregular Languages

- Consider the following regular languages (show regex and NFA/DFA, count # of states)
 - \{01^n \mid n \geq 0\}
 - \{0^n1^m \mid n \geq 0, m \geq 0\}
 - \{0^k1^k \mid 0 \leq k \leq n, \text{ for some fixed } n\}
 - \{w \mid w \text{ has equal # of 01 and 10 substrings}\} \text{ is regular (see Prob. 1.48)}
- If a language is finite, is it always regular? YES

- Now is \{0^n1^n \mid n \geq 0\} regular?

- Not all languages are regular (i.e. not all recognizable by some FA or expressible as a regex)
 - Need to “count & remember” some transition
 - But no way to count to an arbitrarily large number
 - \(C = \{w \mid w \text{ has equal # 0s and 1s}\}\) also not regular
 - Again have to “count”
• How to show some languages non-regular?

• Observation: If the set of strings L is infinite & regular
 • Then matching regex must have at least one “*” or “+”
 • I.e. $R_xR_y^*R_z$ where R_x, R_y, R_z all smaller regexs
 • E.g. $L = ac (bb \cup aa)^* ca$
 • acbbca is in L
 • but so is acca, acbbbbca, acbbbbbbca, …
 • i.e. there are an infinite number of strings of the form
 $ac(bb)^nca$ for all $n \geq 0$ also in L!
 • In general (with caveats) if w is in L, there is some $w=xyz$ so that for all n, so is xy^nz
 • So in general if we find one string we know is in L
 • Then an infinite number of other strings also in L

• Why is this useful? Assume want to show L is NOT regular
 • Proof by contradiction: Assume L IS regular
 • Find a string w known to be in L
 • Look at all possible ways of dividing into $w=xyz$
 • x from some R_x, y from some R_y, z from some R_z
 • In each case show for some k, xy^kz is not in L
 • Contradiction! Assumption that L is regular is FALSE
 • Thus L cannot be a regular language
• (p. 78) **PUMPING LEMMA.** If A is regular, then
 • There is some number \(p \) (called the **pumping length**)
 • Where if \(s \) is any string in A whose length \(\geq p \)
 • **Then \(s \) can be divided somehow into 3 pieces** \(s = xyz \)
 • \(|y| > 0 \), (i.e. \(y \) cannot be \(\epsilon \))
 • \(|xy| \leq p \), (note either \(x \) or \(y \) or both may be \(\epsilon \))
 • **For any \(i \geq 0 \), then \(xy^iz \) is also in A**
• What this means: If L is regular language of infinite size
 • L has associated with it some string length \(p \)
 • Such that if you take *any* string \(w \) from L where \(|w| \geq p \)
 • Then you can *always* write \(w \) as concatenation \(w = xyz \)
 for some strings \(x, y, \) and \(z \) (i.e. at least one)
 • Such that the strings \(xz, xyz, xyyz, xyyyz, \ldots \ xy^iz \) all in L
 • Note: finite languages cannot be pumped
• Example: \{ade, abcde, abcabcde, \ldots\}
 • Regex = a(bc)*de
 • GNFA equivalent has 3 states
 • \(p=4 \), \(x=a \), \(y=bc \), \(z=de \)
 • Easiest to see the \(y \) in a DFA loop, or “*” in the regex
• What this means: If **L is not regular**, then L **does not obey** the pumping lemma

• Can use pumping lemma in a **proof by contradiction** to show language is not regular

 • Assume L **is regular**

 • Then there must exist some p (we don’t need to know exact value)

 • Show that there is **always** some string w in L, |w| ≥ p, that cannot be pumped, regardless of how we partition it into some xyz

 • Need find **ONLY ONE SUCH STRING**

 • Thus assumption is false and L not regular
• (p. 78) Proof in outline:
 • Assume \(M = (Q, \Sigma, \delta, F) \) accepts \(A \)
 • Assume \(p = \# \) of states in \(M \)
 • \(Q = \{q_1, q_2, \ldots, q_p\} \)
 • If no string in \(A \) is \(\geq p \), then theorem obviously true
 • Assume \(s = s_1s_2 \ldots s_n, n \geq p \) (\(n \) is \# of characters in string)
 • Then state sequence must be \((r_0, r_1, \ldots, r_n)\) (see fig. 1.72)
 • where \(r_0 = q_1 \)
 • and \(\delta(r_{i-1}, s_i) = r_i \)
 • But since \(n \geq p \), then \(n+1 > p \)
 • But since only \(p \) states, we must have \textit{repeated} \(n+1-p \) states
 • Assume \(r_j \) is \textit{1st} state that is repeated
 • \(s_{j+1} \) is \textit{1st} character to cause leaving \(r_j \)
 • Assume \(s_l \) is \textit{1st} character that causes re-entry to state \(r_j \)
 • Since we are back at \(r_j \), we could repeat \(s_{j+1} \ldots s_l \) forever
 • i.e. \(s_{l+1} = s_{j+1}, s_{l+2} = s_{j+2} \ldots s_{l+l} = s_l \)
 • The substring \(s_{j+1} \ldots s_l \) (of length \(l-j \)) is \textit{thus} \(y \)
 • We could keep repeating \(s_{j+1} \ldots s_l \) arbitrarily often and still end up at \(r_j \) — i.e. \((s_{j+1} \ldots s_l)^i \) for \(i \geq 0 \)
 • And \(x = s_1s_2 \ldots s_j, z = s_{j+i(l-j)} \ldots s_n, \)
 • Either/both \(x \) and \(z \) could be \(\varepsilon \)
• Use lemma to show B not regular – by contradiction
 • Assume B regular
 • Thus there is some p such that all strings of length ≥ p can be pumped
 • Find a string s in B that is ≥ p, but cannot be pumped
 • Look at all possible ways to divide string into xyz
 • For each way find an i such that xy^iz not in B
 • When found, we have a contradiction!
 • Thus B is NOT regular
• Examples
 • P.80: B =\{0^n1^n \mid n \geq 0\}
 • Look at 3 cases of substrings: all 0s, ..01.., all 1s
 • P.80: C = \{w \mid w \text{ has equal # of 0’s and 1s}\}
 • Look at s = 0^p1^p
 • P.81: F = \{ww \mid w \text{ in } \{0,1\}^*\}
 • Look at s = 0^p1^p0^p1
 • P.82: D = \{1^{n^2} \mid n \geq 0\}
 • Look at s = 1^{p^2}
 • P. 82: E = \{0^i1^j \mid i>j\}
 • Look at s = 0^{p+1}1^p
• Also look at problems 1.53-1.58
Summary: Applying Pumping Lemma

- **The Lemma**: If L is regular and infinite, then
 - There is guaranteed to be some integer p such that
 - If you look at *ANY string s* where |s|≥p
 - You can *always find at least one partitioning* s=xyz where
 - |y|≥1 and |xy|≤p
 - AND xy^i z is also in L FOR ALL i≥0 (we are “pumping” the string)
- **How to apply**: To show that L IS NOT Regular
 - Assume L IS regular
 - You only need find *one string s in L, |s|≥p, that does not pump*
 - Choose a string where you can easily identify:
 - What are all the possible values of xy
 - And you can id what y is for any of these
 - Work thru all possible xy strings partitions
 - There are at most p*(p-1) of them:
 - Show that *each possibility* has at least one i where xy^i z does not belong to L
 - **Example**: \{0^n1^n | n ≥ 0\}
 - If we choose 0^p1^p then we know
 - xy must be all 0s
 - And thus y must be one or more 0s and no 1s
 - And z holds all p 1s (and perhaps some 0s from the end of the 1st half)
 - Now *regardless of what xy actually is* (need only find one value of i)
 - i=0 removes just 0s from the string and thus # of 0s is less than # of 1s, AND thus xy^0 z IS NOT IN L
 - Alternatively if we choose i=2, then we “add” more 0s to the string and thus more 0s than 1s, AND thus xy^2 z IS NOT IN L
 - Thus we have found a string that does not pump, and **THUS L CANNOT BE REGULAR**