Chap. 1.3 Regular Languages

- **Language** = set of strings from some alphabet
- Language \(L \) is **accepted by** FA \(M \) if after last symbol both:
 - For any string in \(L \), \(M \) ends in accept state
 - For any string not in \(L \), \(M \) does not end in accept state
- (p.44) **Regular Language (RL)**: any language accepted by a FA
 - Also called **Regular Expressions (regex)**
- Question: Is there a way of describing all, and only, languages accepted by a FA? I.e. is there a syntax for RLs?
 - Can we build “larger” languages from “smaller” ones?
- Answer to all above: YES
- (p.44) Possible set operations on languages \(A \) and \(B \):
 - **Union**: \(A \cup B = \{ x \mid x \in A \text{ or } x \in B \} \)
 - **Intersection**: \(A \cap B = \{ x \mid x \in A \text{ and } x \in B \} \)
 - **Complementation of \(B \) wrt \(A \)**: \(A/B = \{ x \mid x \in A \text{ and } x \not\in B \} \)
- (p.44) Possible operations on strings in languages
 - **Concatenation**: \(A \circ B = \{ xy \mid xy \text{ a string where } x \in A \text{ and } y \in B \} \)
 - **Star**: \(A^* = \{ x \mid x = \epsilon \text{ or } x = x_1 x_2 \ldots x_k \text{ where } k \geq 1 \text{ and all } x_k \in A \} \)
 - **Plus**: \(A^+ = \{ x \mid x = x_1 x_2 \ldots x_k \text{ where } k \geq 1 \text{ and all } x_k \in A \} \)
- P. 45 Examples of above operations on some simple sets
• **Fundamental Question:** if we apply any of above operations to known RLs, are we **guaranteed** to get another RL?

 • Are we **guaranteed** we can build an FA that accepts result

 • **Answer:** YES if set of RLs is **closed** under the operation

 • **Closure:** A set is **closed** under some operation if applying it to any member(s) of the set returns another member of set

 • i.e. can we build a FA (DFA or NFA) that accepts any language created by applying specified operation

 • **Typical proof process:** by construction

 • Assume language A1 accepted by FA M1, A2 by M2:

 • Show how to build an M (typically using M1 and M2 as pieces) that accepts all strings from any combination of sets A1 and A2 using that operation

 • i.e **Set of all RLs is closed under these operations**

 • Assume following in closure proofs

 • A1 accepted by DFA M1, and M1 = (Q1, Σ, δ1, q1, F1)

 • A2 accepted by DFA M2, and M2 = (Q2, Σ, δ2, q2, F1),

 • Q1 ∩ Q2 = φ (i.e. no common states)

 • We can always “rename” states to prevent confusion
(p.45,46) Prove **closure under U** by constructing new DFA M

- Construct M = (Q, Σ, δ, q0, F)
 - Q = Q1 x Q2
 - i.e. states in M are “named” as tuples (r1, r2)
 - r1 in Q1, r2 in Q2
 - Σ same for all 3 machines
 - δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))
 - q0 = (q1, q2)
 - F = { (r1, r2) | r1εF1 or r2εF2 }

New machine keeps track of states of both machines

- If either ends up in their F, then accept
- If neither accept, then reject

Do example: A1 = set of even # of a’s, A2 = odd # of b’s

(p.47) To show we’ve proven closure, must show:

- If w is accepted by either M1 or M2, it is accepted by M
- If w is accepted by M, it is accepted by either M1 or M2

Both of above are fairly obvious by construction

- Proof of **closure under intersection** is simple: *change F!*
• Since DFAs=NFAs, L is regular iff accepted by some NFA

(p. 59-60) **Alternative construction proof of U** using NFAs

• A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1)
• A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1),
• Construct N = (Q, ∑, δ, q0, F) to recognize A1 U A2
 • Q = {q0} U Q1 U Q2
 • F = F1 U F2
 • δ(q,a) =
 • = δ1(q, a) if q ∈ Q1
 • = δ2(q, a) if q ∈ Q2
 • = {q1, q2} if q = q0 and a = ε
 • = φ if q = q0 and a ≠ ε

• New starting state q0 “guesses correctly” which other machine to start – without looking at any input
• Proving ◦ or * is “harder” – we don’t know when to stop string from one language and start other!
• Really need nondeterminism!
• (p. 60) Proof that RLs are **closed under concatenation**
 • See Fig. 1.48 on p. 61
 • \(\epsilon \) edge from each final state of \(N_1 \) to start state of \(N_2 \)
 • \(N \) “guesses” when to hop from \(N_1 \) to \(N_2 \)
 • \(A_1 \) accepted by NFA \(N_1 \), and \(N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \)
 • \(A_2 \) accepted by NFA \(N_2 \), and \(N_2 = (Q_2, \Sigma, \delta_2, q_2, F_1) \)
 • Construct \(N = (Q, \Sigma, \delta, q_0, F) \) to recognize \(A_1 \circ A_2 \)
 • \(Q = Q_1 \cup Q_2 \)
 • \(q_0 = q_1 \) (from \(N_1 \))
 • \(F = F_2 \) (from \(N_2 \))
 • \(\delta(q,a) = \)
 • \(\delta_1(q, a) \) if \(q \in Q_1 \) and \(q \) not in \(F_1 \)
 • \(\delta_1(q, a) \) if \(q \in F_1 \) and \(a \neq \epsilon \)
 • \(\delta_1(q, a) \cup \{q_2\} \) if \(q \in F_1 \) and \(a = \epsilon \)
 • \(\delta_2(q, a) \) if \(q \in Q_2 \) and any \(a \)
• (p. 62) Proof that RLs are **closed under Kleene star**
 • See Fig. 1.50 on p. 62
 • Add ε edge from *each* final state back to start
 • Again guess correctly when to restart N_1
 • A_1 accepted by NFA N_1, and $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$
 • Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*
 • $Q = \{q_0\} \cup Q_1$
 • $q_0 = $ a new state
 • $F = \{q_0\} \cup F_1$
 • $\{q_0\}$ for empty set when 0 copies
 • $\delta(q,a) =$
 • $= \delta_1(q, a)$ if $q \in Q_1$ and q not in F_1
 • $= \delta_1(q, a)$ if $q \in F_1$ and $a \neq \varepsilon$
 • $= \delta_1(q, a) \cup \{q_1\}$ if $q \in F_1$ and $a = \varepsilon$
 • $= \{q_1\}$
 • $= \emptyset$ if $q = Q_0$ and $a \neq \varepsilon$
• (p63 – Section 1.3) Regular Expressions
• Example: describing arithmetic expressions:

\[
\begin{align*}
<\text{op1}> & \rightarrow + \mid - \\
<\text{op2}> & \rightarrow * \mid / \\
<\text{factor}> & \rightarrow \text{<number>} \mid (\text{arith-expr}) \mid \text{<factor>^<factor>} \\
<\text{term}> & \rightarrow \text{<factor>} \mid <\text{term}> <\text{op2}> <\text{factor}> \\
<\text{arith-expr}> & \rightarrow <\text{term}> \mid <\text{arith-expr}> <\text{op1}> <\text{term}>
\end{align*}
\]

• Notice this defines a precedence for operators:
 • Do inside () first
 • Do ^ next
 • Do * or / next before + or –
 • Do + or - last
• (p. 64) Describing regular expressions R (no precedence)

$\langle\text{regex} \rangle \rightarrow \phi \mid \varepsilon \mid \ldots \text{any member of } \Sigma \ldots$

$| (\langle\text{regex} \rangle \cup \langle\text{regex} \rangle) |
| (\langle\text{regex} \rangle \circ \langle\text{regex} \rangle) |
| (\langle\text{regex} \rangle^*)$

• Note: this demands () all the time
• No assumed precedence
• Normal Precedence rules – drop unnecessary ()
 • Do inside () first
 • Do * first, then ◦, then U
• Examples p. 65 Example 1.53
• Redo of BNF to “build-in” precedence

$\langle\text{basic-regex} \rangle \rightarrow \phi \mid \varepsilon \mid \ldots \text{any member of } \Sigma \ldots$

$\langle\text{regex-factor} \rangle \rightarrow \langle\text{basic-regex} \rangle \mid (\langle\text{regex} \rangle)
\mid \langle\text{regex-factor} \rangle^*$

$\langle\text{regex-term} \rangle \rightarrow \langle\text{regex-factor} \rangle$

$| \langle\text{regex-term} \rangle \circ \langle\text{regex-factor} \rangle |
\langle\text{regex} \rangle \rightarrow \langle\text{regex-term} \rangle$

$| \langle\text{regex} \rangle U \langle\text{regex} \rangle$
• Examples p. 65
• (p. 66) **Identities**: for all R
 • $R \cup \phi = R$. Adding empty language to any other does not change it
 • $R \circ \epsilon = R$. Concatenating the empty string to any string in a language does not change R
• (p. 66) **Non-identities**
 • $R \cup \epsilon$ may be different from R.
 • E.g. $R = 0$ so $L(R) = \{0\}$, but $L(R \cup \epsilon) = \{0, \epsilon\}$
 • $R \circ \phi$ may be different from R.
 • E.g. $R = 0$ so $L(R) = \{0\}$, but $L(R \circ \phi) = \phi$
 • There are no strings to concatenate on right
• (p.66) Regex for <number> as defined above
 • $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 • $(+ \cup - \cup \epsilon) \ (D^+ \cup D^+.D^* \cup D^*.D^+)$
• (p. 66) Theorem 1.54: A language is regular iff a regular expression describes it.
 • Remember all RLs eqvt to FA
• Lemma 1.55: If L described by a regex R, its regular
 • (p. 67) Proof by construction of an NFA: 6 cases
 • (p. 68, 69) Ex. 1.56, 1.57, 1.58, 1.59
• Lemma 1.60 (p. 69): If L is regular then it is described by a regex
 • Proof by construction from DFA to GNFA to regex
• Generalized NFAs (GNFA)
 • NFA where edges may have arbitrary regex on them
 • We know that any regex can be converted into an NFA
 • Thus could replace each such edge with a small NFA
 • Start state as transitions to every other state but no incoming
 • Only one accept state with transitions incoming from all others but no outgoing
 • Start and accept states must be different
 • Except for start and accept, transition from every state to every other state, including a self-loop
• (p. 73) **Formal Definition of GNFA** \((Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})\)
 - \(\delta: (Q-\{q_{\text{accept}}\}) \times (Q-\{q_{\text{start}}\}) \rightarrow R\), where \(R\) is all regex over \(\Sigma\)
 - GNFA accepts \(w\) if \(w=w_1...w_k\) where each \(w_i\) string from \(\Sigma^*\)
 - and sequence of states \(q_0,...q_k\) such that
 - \(q_0 = q_{\text{start}}, q_k = q_{\text{final}}\)
 - \(w_i \in L(R_i)\) where \(R_i = \delta(q_{i-1}, q_i)\) (i.e. the label on the edge)

• (p. 71) Any DFA can be converted into GNFA
 - Add new start state with \(\epsilon\) transition to old start
 - Add new final state with \(\epsilon\) from all old final states
 - If edge has multiple labels
 - Replace by single edge with label = \(U\) of prior labels
 - Add edge with \(\phi\) between any states without an edge
 - See Fig. 1-61: do conversion on paper to bigger NFA

• (p. 69) **Lemma 1.60** If \(A\) is regular, then describable by regex
 - (p. 73) Proof by converting DFA \(M\) for \(A\) into GNFA \(G\)
 - With \(k = \#\) states in \(G\)
 - Then modify GNFA as follows
 - If \(k=2\) then GNFA must have \(q_{\text{start}}\) and \(q_{\text{accept}}\) and edge between them is desired regex
 - If \(k>2\), repeat until \(k=2\): convert \(G\) into \(G'\)
 - Select any start \(q_{\text{rip}}\) other than \(q_{\text{start}}\) and \(q_{\text{accept}}\)
 - Define \(G'\) be GNFA where \(Q' = Q - \{q_{\text{rip}}\}\)
 - For each \(q_i\) in \(Q'\) - \(q_{\text{start}}\) and \(q_j\) in \(Q'\) - \(\{q_{\text{accept}}\}\)
\(\delta'(q_i, q_j) = (R1)(R2)^* (R3) \cup (R4) \) where

- \(R1 = \delta(q_i, q_{rip}) \) (label on edge from \(q_i \) to \(q_{rip} \))
- \(R2 = \delta(q_{rip}, q_{rip}) \) (label on edge on self loop \(q_{rip} \))
- \(R3 = \delta(q_{rip}, q_j) \) (label on edge from \(q_{rip} \) to \(q_j \))
- \(R4 = \delta(q_i, q_j) \) (original label on edge from \(q_i \) to \(q_j \))

Eg. p. 75, 76