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Chap. 1.3 Regular Languages 

• Language = set of strings from some alphabet 

• Language L is accepted by FA M if after last symbol both: 

• For any string in L, M ends in accept state 

• For any string not in L, M does not end in accept state 

• (p.44)Regular Language (RL): any language accepted by a FA 

• Also called Regular Expressions (regex) 

• Question: Is there a way of describing all, and only, 

languages accepted by a FA? I.e. is there a syntax for RLs? 

• Can we build “larger” languages from “smaller” ones? 

• Answer to all above: YES 

•  (p.44) Possible set operations on languages A and B:  

• Union: A U B = {x | xεA or xεB}  

• Intersection: A ∩ A B {x | xεA and xεB} 

• Complementation of B wrt A: A/B = {x| xεA and x not in B} 

• (p.44) Possible operations on strings in languages 

• Concatenation: A ◦ B = {xy |xy a string where  xεA and  yεB}  

• Star: A* = { x|x = ε or x= x1x2 …xk where k≥1 and all xkεA } 

• Plus: A+ = { x|x= x1x2 …xk where k≥1 and all xkεA } 

• P. 45 Examples of above operations on some simple sets 
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• Fundamental Question: if we apply any of above 

operations to known RLs, are we guaranteed to get 

another RL? 

• Are we guaranteed we can build an FA that accepts result 

• Answer: YES if set of RLs is closed under the operation  

• Closure: A set is closed under some operation if applying it 

to any member(s) of the set returns another member of set 

• i.e. can we build a FA (DFA or NFA) that accepts any language 

created by applying specified operation 

• Typical proof process: by construction 

• Assume language A1 accepted by FA M1, A2 by M2: 

• Show how to build an M (typically using M1 and M2 as 

pieces) that accepts all strings from any combination of 

sets A1 and A2 using that operation  

• i.e Set of all RLs is closed under these operations 

• Assume following in closure proofs 

• A1 accepted by DFA M1, and M1 = (Q1, ∑, δ1, q1, F1) 

• A2 accepted by DFA M2, and M2 = (Q2, ∑, δ2, q2, F1),  

• Q1 ∩ Q2 = ф (i.e. no common states) 

• We can always “rename” states to prevent confusion 
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• (p.45,46) Prove closure under U by constructing new DFA M 

• Construct M = (Q, ∑, δ, q0, F) 

• Q = Q1 x Q2  

• i.e. states in M are “named” as tuples (r1, r2) 

• r1 in Q1, r2 in Q2 

• ∑ same for all 3 machines 

• δ( (r1,r2), a) = ( δ1(r1,a), δ2(r2,a) ) 

• q0 = (q1, q2) 

• F = { (r1, r2) | r1εF1 or r2εF2} 

• New machine keeps track of states of both machines 

• If either ends up in their F, then accept 

• If neither accept, then reject 

• Do example: A1 = set of even # of a’s, A2 = odd # of b’s 

• (p.47) To show we’ve proven closure, must show: 

• If w is accepted by either M1 or M2, it is accepted by M 

• If w is accepted by M, it is accepted by either M1 or M2 

• Both of above are fairly obvious by construction 

• Proof of closure under intersection is simple: change F! 
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• Since DFAs=NFAs, L is regular iff accepted by some NFA 

• (p. 59-60) Alternative construction proof of U using NFAs 

• A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1) 

• A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1),  

• Construct N = (Q, ∑, δ, q0, F) to recognize A1 U A2 

• Q = {q0} U Q1 U Q2 

• F = F1 U F2 

• δ(q,a) =  

• = δ1(q, a) if q ε Q1 

• = δ2(q, a) if q ε Q2 

• = {q1, q2} if q = q0 and a = ε 

• = ф if q = q0 and a ≠ ε 

• New starting state q0 “guesses correctly” which other 

machine to start – without looking at any input 

• Proving ◦ or * is “harder” – we don’t know when to stop string 

from one language and start other! 

• Really need nondeterminism! 
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• (p. 60) Proof that RLs are closed under concatenation  

• See Fig. 1.48 on p. 61 

• ε edge from each final state of N1 to start state of N2 

• N “guesses” when to hop from N1 to N2 

• A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1) 

• A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1) 

• Construct N = (Q, ∑, δ, q0, F) to recognize A1 ◦  A2 

• Q = Q1 U Q2 

• q0 = q1 (from N1) 

• F = F2 (from N2)  

• δ(q,a) =  

• = δ1(q, a) if q ε Q1 and q not in F1 

• = δ1(q, a) if q ε F1 and a ≠ ε 

• = δ1(q, a) U {q2} if q ε F1 and a = ε 

• = δ2(q, a) if q ε Q2 and any a 
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• (p. 62) Proof that RLs are closed under Kleene star  

• See Fig. 1.50 on p. 62 

• Add ε edge from each final state back to start 

• Again guess correctly when to restart N1 

• A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1) 

• Construct N = (Q, ∑, δ, q0, F) to recognize A1* 

• Q = {q0} U Q1 

• q0 = a new state 

• F = {q0} U F1 

• {q0} for empty set when 0 copies  

• δ(q,a) =  

• = δ1(q, a) if q ε Q1 and q not in F1 

• = δ1(q, a) if q ε F1 and a ≠ ε 

• = δ1(q, a) U {q1} if q ε F1 and a = ε 

• = {q1} 

• = ф if q = Q0 and a ≠ ε 

  



7 
 

• (p63 – Section 1.3) Regular Expressions 

• Example: describing arithmetic expressions: 

<op1> -> + | - 

<op2> -> * | / 

<factor> -> <number> | (<arith-expr>) | <factor>^<factor> 

<term> -> <factor> | <term> <op2> <factor> 

< arith-expr > -> <term> | < arith-expr > <op1> <term> 

• Notice this defines a precedence for operators: 

• Do inside () first 

• Do ^ next 

• Do * or / next before + or – 

• Do + or - last 
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• (p. 64) Describing regular expressions R (no precedence) 

<regex > -> ɸ | ε | … any member of ∑ … 

| ( <regex > U <regex > ) 

| (<regex > ◦ <regex > ) 

| (<regex>*) 

• Note: this demands () all the time 

• No assumed precedence 

• Normal Precedence rules – drop unnecessary () 

• Do inside () first 

• Do * first, then ◦, then U 

• Examples p. 65 Example 1.53 

• Redo of BNF to “build-in” precedence 

<basic-regex> -> ɸ | ε | … any member of ∑ … 

<regex-factor> -> <basic-regex> | ( <regex> )  

| <regex-factor>* 

<regex-term> -> <regex-factor>  

| <regex-term> ◦ < regex-factor >  

<regex > -> <regex-term>  

     | <regex> U <regex>  
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• Examples p. 65 

• (p. 66) Identities: for all R 

• R U ɸ = R. Adding empty language to any other does not 

change it 

• R ◦ ε = R. Concatenating the empty string to any string in a 

language does not change R 

• (p. 66) Non-identities 

• R U ε  may be different from R. 

• E.g. R = 0 so L(R) = {0}, but L(R U ε) = {0, ε} 

• R ◦ ɸ  may be different from R. 

• E.g. R = 0 so L(R) = {0}, but L(R ◦ ɸ) = ɸ 

• There are no strings to concatenate on right 

• (p.66) Regex for <number> as defined above 

• D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

• (+ U – U ε) (D+  U  D+.D*  U  D*.D+ ) 
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• (p. 66) Theorem 1.54: A language is regular iff a regular 

expression describes it. 

• Remember all RLs eqvt to FA 

• Lemma 1.55: If L described by a regex R, its regular 

• (p. 67) Proof by construction of an NFA: 6 cases 

• (p. 68, 69) Ex. 1.56, 1.57, 1.58, 1.59 

• Lemma 1.60 (p. 69): If L is regular then it is described by a 

regex 

• Proof by construction from DFA to GNFA to regex 

• Generalized NFAs (GNFA) 

• NFA where edges may have arbitrary regex on them 

• We know that any regex can be converted into an NFA 

• Thus could replace each such edge with a small NFA 

• Start state as transitions to every other state but no 

incoming 

• Only one accept state with transitions incoming from 

all others but no outgoing 

• Start and accept states must be different 

• Except for start and accept, transition from every 

state to every other state, including a self-loop 
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• (p. 73) Formal Definition of GNFA (Q, ∑, δ, qstart, qaccept) 

• δ: (Q-{qaccept}) x (Q-{qstart}) -> R, where R is all regex over ∑ 

• GNFA accepts w if w=w1…wk where each wi string from ∑* 

• and sequence of states q0,…qk such that 

• q0 = qstart, qk = qfinal 

• wi ε L(Ri) where Ri = δ(qi-1, qi) (i.e. the label on the edge) 

• (p. 71) Any DFA can be converted into GNFA 

• Add new start state with ε transition to old start 

• Add new final state with ε from all old final states 

• If edge has multiple labels 

• Replace by single edge with label = U of prior labels 

• Add edge with ɸ between any states without an edge 

• See Fig. 1-61: do conversion on paper to bigger NFA 

• (p. 69) Lemma 1.60  If A is regular, then describable by regex 

• (p. 73) Proof by converting DFA M for A into GNFA G 

• With k = # states in G 

• Then modify GNFA as follows 

• If k=2 then GNFA must have qstart and qaccept and edge 

between them is desired regex 

• If k>2, repeat until k=2: convert G into G’  

• Select any start qrip other than qstart and qaccept 

• Define G’ be GNFA where Q’ = Q – {qrip} 

• For each qi in Q’ - qstart and qj in Q’ – {qaccept} 



12 
 

• δ’(qi,qj) = (R1)(R2)*(R3) U (R4) where 

• R1 = δ(qi,qrip) (label on edge from qi to qrip ) 

• R2 = δ(qrip,qrip) (label on edge on self loop qrip)  

• R3 = δ(qrip,qj) (label on edge from qrip to qj) )  

• R4 = δ(qi,qj) (original label on edge from qi to qj) 

• Eg. p. 75,76 

 


