Chap. 1.3 Regular Languages

- Language = <u>set of strings</u> from some alphabet
- Language <u>L is **accepted by** FA M</u> if after last symbol both:
 - For any string in L, M ends in accept state
 - For any string not in L, M does not end in accept state
- (p.44)Regular Language (RL): any language accepted by a FA
 - Also called **Regular Expressions (regex)**
- Question: Is there a way of describing all, and only, languages accepted by a FA? I.e. is there a syntax for RLs?
 - Can we build "larger" languages from "smaller" ones?
- Answer to all above: YES
- (p.44) Possible set operations on languages A and B:
 - **Union**: A **U** B = {x | xεA or xεB}
 - Intersection: $A \cap A B \{x \mid x \in A \text{ and } x \in B\}$
 - **Complementation of B wrt A**: A/B = {x | xεA and x not in B}
- (p.44) Possible operations on strings in languages
 - **Concatenation**: $A \circ B = \{xy \mid xy \text{ a string where } x \in A \text{ and } y \in B\}$
 - Star: $A^* = \{ x | x = \varepsilon \text{ or } x = x_1x_2 \dots x_k \text{ where } k \ge 1 \text{ and all } x_k \varepsilon A \}$
 - **Plus**: $A^+ = \{ x | x = x_1x_2 \dots x_k \text{ where } k \ge 1 \text{ and all } x_k \in A \}$
- P. 45 Examples of above operations on some simple sets

Fundamental Question: if we apply any of above operations to known RLs, are we <u>guaranteed</u> to get another RL?

- Are we guaranteed we can build an FA that accepts result
- Answer: YES if set of RLs is **closed** under the operation
- **Closure**: A set is **closed** under some operation if applying it to any member(s) of the set returns another member of set
 - i.e. can we build a FA (DFA or NFA) that accepts any language created by applying specified operation
 - Typical proof process: by construction
 - Assume language A1 accepted by FA M1, A2 by M2:
 - Show how to build an M (typically using M1 and M2 as pieces) that accepts all strings from any combination of sets A1 and A2 using that operation
 - i.e <u>Set of all RLs is closed under these operations</u>
 - Assume following in closure proofs
 - A1 accepted by DFA M1, and M1 = (Q1, Σ , δ 1, q1, F1)
 - A2 accepted by DFA M2, and M2 = (Q2, Σ , δ 2, q2, F1),
 - $Q1 \cap Q2 = \phi$ (i.e. no common states)
 - We can always "rename" states to prevent confusion

- (p.45,46) Prove **closure under U** by constructing new DFA M
 - Construct M = (Q, ∑, δ, q0, F)
 - Q = Q1 x Q2
 - i.e. states in M are "named" as tuples (r1, r2)
 - r1 in Q1, r2 in Q2
 - ∑ same for all 3 machines
 - δ((r1,r2), a) = (δ1(r1,a), δ2(r2,a))
 - q0 = (q1, q2)
 - F = { (r1, r2) | r1εF1 <u>or</u> r2εF2}
- New machine keeps track of states of <u>both</u> machines
 - If either ends up in their F, then accept
 - If neither accept, then reject
- Do example: A1 = set of even # of a's, A2 = odd # of b's
- (p.47) To show we've proven closure, must show:
 - If w is accepted by either M1 or M2, it is accepted by M
 - If w is accepted by M, it is accepted by either M1 or M2
- Both of above are fairly obvious by construction
- Proof of **closure under intersection** is simple: **change F**!

- Since DFAs=NFAs, L is regular iff accepted by some NFA
- (p. 59-60) Alternative construction proof of U using NFAs
 - A1 accepted by NFA N1, and N1 = (Q1, Σ , δ 1, q1, F1)
 - A2 accepted by NFA N2, and N2 = (Q2, Σ , δ 2, q2, F1),
 - Construct N = (Q, \sum , δ , q0, F) to recognize A1 U A2
 - Q = {q0} U Q1 U Q2
 - F = F1 U F2
 - δ(q,a) =
 - = δ1(q, a) if q ε Q1
 - = $\delta 2(q, a)$ if $q \in Q2$
 - = {q1, q2} if q = q0 and a = ε
 - = ϕ if q = q0 and a $\neq \varepsilon$
 - New starting state q0 "guesses correctly" which other machine to start without looking at any input
- Proving
 or * is "harder" we don't know when to stop string from one language and start other!
 - Really need nondeterminism!

- (p. 60) Proof that RLs are closed under concatenation
 - See Fig. 1.48 on p. 61
 - ε edge from *each* final state of N1 to start state of N2
 - N "guesses" when to hop from N1 to N2
 - A1 accepted by NFA N1, and N1 = (Q1, Σ , δ 1, q1, F1)
 - A2 accepted by NFA N2, and N2 = (Q2, Σ , δ 2, q2, F1)
 - Construct N = (Q, Σ , δ , q0, F) to recognize A1 \circ A2
 - Q = Q1 U Q2
 - q0 = q1 (from N1)
 - F = F2 (from N2)
 - δ(q,a) =
 - = $\delta 1(q, a)$ if q ϵ Q1 and q not in F1
 - = $\delta 1(q, a)$ if $q \in F1$ and $a \neq \epsilon$
 - = $\delta 1(q, a) \cup \{q2\}$ if $q \in F1$ and $a = \epsilon$
 - = $\delta 2(q, a)$ if $q \in Q2$ and any a

- (p. 62) Proof that RLs are closed under Kleene star
 - See Fig. 1.50 on p. 62
 - Add ε edge from *each* final state back to start
 - Again guess correctly when to restart N1
 - A1 accepted by NFA N1, and N1 = (Q1, Σ , δ 1, q1, F1)
 - Construct N = (Q, Σ , δ , q0, F) to recognize A1*
 - Q = {q0} U Q1
 - q0 = a new state
 - F = {q0} U F1
 - {q0} for empty set when 0 copies
 - δ(q,a) =
 - = $\delta 1(q, a)$ if $q \in Q1$ and q not in F1
 - = $\delta 1(q, a)$ if $q \in F1$ and $a \neq \epsilon$
 - = $\delta 1(q, a) \cup \{q1\}$ if $q \in F1$ and $a = \epsilon$
 - = {q1}
 - = ϕ if q = Q0 and a $\neq \epsilon$

- (p63 Section 1.3) Regular Expressions
- Example: describing arithmetic expressions:

```
<op1> -> + | -
<op2> -> * | /
<factor> -> <number> | (<arith-expr>) | <factor>^<factor>
<term> -> <factor> | <term> <op2> <factor>
< arith-expr > -> <term> | < arith-expr > <op1> <term>
```

- Notice this defines a precedence for operators:
 - Do inside () first
 - Do ^ next
 - Do * or / next before + or -
 - Do + or last

(p. 64) Describing regular expressions R (no precedence)
 <regex > -> φ | ε | ... any member of ∑ ...

```
| ( <regex > U <regex > )
| (<regex > ° <regex > )
| (<regex>*)
```

- Note: this demands () all the time
- No assumed precedence
- Normal Precedence rules drop unnecessary ()
 - Do inside () first
 - Do * first, then °, then U
- Examples p. 65 Example 1.53

| <regex> U <regex>

- Examples p. 65
- (p. 66) Identities: for all R
 - R U φ = R. Adding empty language to any other does not change it
 - R ° ε = R. Concatenating the empty string to any string in a language does not change R
- (p. 66) Non-identities
 - R U ϵ may be different from R.
 - E.g. R = 0 so $L(R) = \{0\}$, but $L(R \cup \epsilon) = \{0, \epsilon\}$
 - $R \circ \varphi$ may be different from R.
 - E.g. R = 0 so $L(R) = \{0\}$, but $L(R \circ \varphi) = \varphi$
 - There are no strings to concatenate on right
- (p.66) Regex for <number> as defined above
 - D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - $(+ U U \epsilon) (D^+ U D^+.D^* U D^*.D^+)$

- (p. 66) Theorem 1.54: A language is regular iff a regular expression describes it.
 - Remember all RLs eqvt to FA
- Lemma 1.55: If L described by a regex R, its regular
 - (p. 67) Proof by construction of an NFA: 6 cases
 - (p. 68, 69) Ex. 1.56, 1.57, 1.58, 1.59
- Lemma 1.60 (p. 69): If L is regular then it is described by a regex
 - Proof by construction from DFA to GNFA to regex
 - Generalized NFAs (GNFA)
 - NFA where edges may have arbitrary regex on them
 - We know that any regex can be converted into an NFA
 - Thus could replace each such edge with a small NFA
 - Start state as transitions to every other state but no incoming
 - Only one accept state with transitions incoming from all others but no outgoing
 - Start and accept states must be different
 - Except for start and accept, transition from every state to every other state, including a self-loop

- (p. 73) Formal Definition of GNFA (Q, Σ , δ , q_{start} , q_{accept})
 - δ : (Q-{q_{accept}}) x (Q-{q_{start}}) -> R, where R is all regex over \sum
 - GNFA accepts w if $w=w_1...w_k$ where each w_i string from \sum^*
 - and sequence of states q0,...qk such that
 - $q0 = q_{start}$, $qk = q_{final}$
 - $w_i \in L(R_i)$ where $R_i = \delta(q_{i-1}, q_i)$ (i.e. the label on the edge)
- (p. 71) Any DFA can be converted into GNFA
 - Add new start state with $\boldsymbol{\epsilon}$ transition to old start
 - Add new final state with ε from all old final states
 - If edge has multiple labels
 - Replace by single edge with label = U of prior labels
 - Add edge with ϕ between any states without an edge
 - See Fig. 1-61: do conversion on paper to bigger NFA
- (p. 69) Lemma 1.60 If A is regular, then describable by regex
 - (p. 73) Proof by converting DFA M for A into GNFA G
 - With k = # states in G
 - Then modify GNFA as follows
 - If k=2 then GNFA must have q_{start} and q_{accept} and edge between them is desired regex
 - If k>2, repeat until k=2: convert G into G'
 - Select any start q_{rip} other than q_{start} and q_{accept}
 - Define G' be GNFA where $Q' = Q \{q_{rip}\}$
 - For each q_i in Q' q_{start} and q_j in Q' {q_{accept}}

- $\delta'(q_i, q_j) = (R1)(R2)^*(R3) \cup (R4)$ where
 - $R1 = \delta(q_i, q_{rip})$ (label on edge from q_i to q_{rip})
 - $R2 = \delta(q_{rip}, q_{rip})$ (label on edge on self loop q_{rip})
 - R3 = $\delta(q_{rip}, q_j)$ (label on edge from q_{rip} to q_j))
 - $R4 = \delta(q_i, q_j)$ (original label on edge from q_i to q_j)

• Eg. p. 75,76