## Chap. 1.3 Regular Languages

- Language $=$ set of strings from some alphabet
- Language $L$ is accepted by FA M if after last symbol both:
- For any string in $L, M$ ends in accept state
- For any string not in $L, M$ does not end in accept state
- (p.44)Regular Language (RL): any language accepted by a FA - Also called Regular Expressions (regex)
- Question: Is there a way of describing all, and only, languages accepted by a FA? I.e. is there a syntax for RLs?
- Can we build "larger" languages from "smaller" ones?
- Answer to all above: YES
- (p.44) Possible set operations on languages $A$ and $B$ :
- Union: $\mathrm{A} U \mathrm{~B}=\{\mathrm{x} \mid \mathrm{x} \mathrm{xA}$ or $\mathrm{x} \mathrm{\varepsilon B}\}$
- Intersection: $A \cap A B\{x \mid x \varepsilon A$ and $x \varepsilon B\}$
- Complementation of $B$ wrt $A: A / B=\{x \mid x \varepsilon A$ and $x$ not in $B\}$
- ( $p .44$ ) Possible operations on strings in languages
- Concatenation: $\mathrm{A} \circ \mathrm{B}=\{\mathrm{xy} \mid \mathrm{xy}$ a string where $\mathrm{x} \varepsilon \mathrm{A}$ and $\mathrm{y} \varepsilon \mathrm{B}\}$
- Star: $A^{*}=\left\{x \mid x=\varepsilon\right.$ or $x=x_{1} x_{2} \ldots x_{k}$ where $k \geq 1$ and all $\left.x_{k} \varepsilon A\right\}$
- Plus: $A^{+}=\left\{x \mid x=x_{1} x_{2} \ldots x_{k}\right.$ where $k \geq 1$ and all $\left.x_{k} \varepsilon A\right\}$
- P. 45 Examples of above operations on some simple sets
- Fundamental Question: if we apply any of above operations to known RLs, are we guaranteed to get another RL?
- Are we guaranteed we can build an FA that accepts result
- Answer: YES if set of RLs is closed under the operation
- Closure: A set is closed under some operation if applying it to any member(s) of the set returns another member of set
- i.e. can we build a FA (DFA or NFA) that accepts any language created by applying specified operation
- Typical proof process: by construction
- Assume language A1 accepted by FA M1, A2 by M2:
- Show how to build an M (typically using M1 and M2 as pieces) that accepts all strings from any combination of sets A1 and A2 using that operation
- i.e Set of all RLs is closed under these operations
- Assume following in closure proofs
- A1 accepted by DFA M1, and M1 = (Q1, $\Sigma, \delta 1, q 1, F 1)$
- A2 accepted by DFA M2, and M2 = (Q2, $\Sigma, \delta 2, q 2, F 1)$,
- $\mathrm{Q} 1 \cap \mathrm{Q} 2=\phi$ (i.e. no common states)
- We can always "rename" states to prevent confusion
- (p.45,46) Prove closure under U by constructing new DFA M
- Construct $M=(Q, \Sigma, \delta, q 0, F)$
- $\mathrm{Q}=\mathrm{Q} 1 \times \mathrm{Q} 2$
- i.e. states in M are "named" as tuples ( $\mathrm{r} 1, \mathrm{r} 2$ )
- $r 1$ in Q1, r2 in Q2
- $\sum$ same for all 3 machines
- $\delta((r 1, r 2), a)=(\delta 1(r 1, a), \delta 2(r 2, a))$
- $q 0=(q 1, q 2)$
- $F=\{(r 1, r 2) \mid r 1 \varepsilon F 1$ or $r 2 \varepsilon F 2\}$
- New machine keeps track of states of both machines
- If either ends up in their F, then accept
- If neither accept, then reject
- Do example: A1 = set of even \# of a's, A2 = odd \# of b's
- (p.47) To show we've proven closure, must show:
- If $w$ is accepted by either M1 or M2, it is accepted by M
- If $w$ is accepted by M , it is accepted by either M1 or M2
- Both of above are fairly obvious by construction
- Proof of closure under intersection is simple: change F!
- Since DFAs=NFAs, L is regular iff accepted by some NFA
- (p. 59-60) Alternative construction proof of U using NFAs
- A1 accepted by NFA N1, and N1 = (Q1, $\Sigma, \delta 1, q 1, F 1)$
- A2 accepted by NFA N2, and N2 = (Q2, $\Sigma, \delta 2, q 2, F 1)$,
- Construct $N=(Q, \Sigma, \delta, q 0, F)$ to recognize $A 1 U A 2$
- $\mathrm{Q}=\{q 0\}$ U Q1 U Q2
- F = F1 U F2
- $\delta(q, a)=$
- $=\delta 1(q, a)$ if $q \varepsilon$ Q1
- $=\delta 2(q, a)$ if $q \varepsilon$ Q2
- = \{q1, q2\} if $q=q 0$ and $a=\varepsilon$
- = $\phi$ if $q=q 0$ and $a \neq \varepsilon$
- New starting state q0 "guesses correctly" which other machine to start - without looking at any input
- Proving ${ }^{\circ}$ or * is "harder" - we don’t know when to stop string from one language and start other!
- Really need nondeterminism!
- (p. 60) Proof that RLs are closed under concatenation
- See Fig. 1.48 on p. 61
- $\varepsilon$ edge from each final state of N1 to start state of N2
- N "guesses" when to hop from N1 to N2
- A1 accepted by NFA N1, and N1 = (Q1, $\Sigma, \delta 1, q 1, F 1)$
- A2 accepted by NFA N2, and N2 $=(Q 2, \Sigma, \delta 2, q 2, F 1)$
- Construct $N=(Q, \Sigma, \delta, q 0, F)$ to recognize $A 1 \circ A 2$
- $\mathrm{Q}=\mathrm{Q} 1 \mathrm{U}$ Q2
- $\mathrm{q} 0=\mathrm{q} 1$ (from N 1$)$
- $\mathrm{F}=\mathrm{F} 2$ (from N2)
- $\delta(q, a)=$
- $=\delta 1(q, a)$ if $q \varepsilon$ Q1 and $q$ not in F1
- $=\delta 1(\mathrm{q}, \mathrm{a})$ if $\mathrm{q} \varepsilon \mathrm{F} 1$ and $\mathrm{a} \neq \varepsilon$
- $=\delta 1(q, a) \cup\{q 2\}$ if $q \varepsilon$ F1 and $a=\varepsilon$
- $=\delta 2(q, a)$ if $q \varepsilon$ Q2 and any $a$
- (p. 62) Proof that RLs are closed under Kleene star
- See Fig. 1.50 on p. 62
- Add $\varepsilon$ edge from each final state back to start
- Again guess correctly when to restart N1
- A1 accepted by NFA N1, and N1 = (Q1, $\Sigma, \delta 1, q 1, F 1)$
- Construct $N=(Q, \Sigma, \delta, q 0, F)$ to recognize $A 1 *$
- $Q=\{q 0\} \cup Q 1$
- q0 = a new state
- $F=\{q 0\} \cup F 1$
- $\{q 0\}$ for empty set when 0 copies
- $\delta(q, a)=$
- $=\delta 1(\mathrm{q}, \mathrm{a})$ if $\mathrm{q} \varepsilon$ Q1 and q not in F1
- $=\delta 1(\mathrm{q}, \mathrm{a})$ if $\mathrm{q} \varepsilon \mathrm{F} 1$ and $\mathrm{a} \neq \varepsilon$
- $=\delta 1(q, a) \cup\{q 1\}$ if $q \varepsilon F 1$ and $a=\varepsilon$
- = \{q1\}
- $=\phi$ if $\mathrm{q}=\mathrm{Q} 0$ and $\mathrm{a} \neq \varepsilon$
- (p63 - Section 1.3) Regular Expressions
- Example: describing arithmetic expressions:
<op1> -> + | -<op2>->* | /
<factor> -> <number> | (<arith-expr>) | <factor>^<factor> <term> -> <factor> | <term> <op2> <factor>
< arith-expr > -> <term> | < arith-expr > <op1> <term>
- Notice this defines a precedence for operators:
- Do inside () first
- Do ^ next
- Do * or / next before + or -
- Do + or - last
- (p. 64) Describing regular expressions R (no precedence) <regex > -> $\phi|\varepsilon| \ldots$ any member of $\sum \ldots$

$$
\begin{aligned}
& \text { | (<regex > U <regex > ) } \\
& \text { | (<regex >o <regex > ) } \\
& \text { | (<regex>*) }
\end{aligned}
$$

- Note: this demands () all the time
- No assumed precedence
- Normal Precedence rules - drop unnecessary ()
- Do inside () first
- Do * first, then 0 , then $U$
- Examples p. 65 Example 1.53
- Redo of BNF to "build-in" precedence

```
<basic-regex> -> }\phi|\varepsilon|\ldots\mathrm{ any member of }\sum..
<regex-factor> -> <basic-regex> | ( <regex> )
    | <regex-factor>*
<regex-term> -> <regex-factor>
    | <regex-term> 0 < regex-factor >
<regex > -> <regex-term>
| <regex> U <regex>
```

- Examples p. 65
- (p. 66) Identities: for all R
- $R \cup \phi=R$. Adding empty language to any other does not change it
- $R \circ \varepsilon=R$. Concatenating the empty string to any string in a language does not change $R$
- (p. 66) Non-identities
- $R \cup \varepsilon$ may be different from $R$.
- E.g. $R=0$ so $L(R)=\{0\}$, but $L(R U \varepsilon)=\{0, \varepsilon\}$
- $R \circ \phi$ may be different from $R$.
- E.g. $R=0$ so $L(R)=\{0\}$, but $L(R \circ \phi)=\phi$
- There are no strings to concatenate on right
- (p.66) Regex for <number> as defined above
- $D=\{0,1,2,3,4,5,6,7,8,9\}$
- $(+U-U \varepsilon)\left(D^{+} U D^{+} . D^{*} U D^{*} . D^{+}\right)$
- (p. 66) Theorem 1.54: A language is regular iff a regular expression describes it.
- Remember all RLs eqvt to FA
- Lemma 1.55: If $L$ described by a regex $R$, its regular
- (p. 67) Proof by construction of an NFA: 6 cases
- (p. 68, 69) Ex. 1.56, 1.57, 1.58, 1.59
- Lemma 1.60 (p. 69): If $L$ is regular then it is described by a regex
- Proof by construction from DFA to GNFA to regex
- Generalized NFAs (GNFA)
- NFA where edges may have arbitrary regex on them
- We know that any regex can be converted into an NFA
- Thus could replace each such edge with a small NFA
- Start state as transitions to every other state but no incoming
- Only one accept state with transitions incoming from all others but no outgoing
- Start and accept states must be different
- Except for start and accept, transition from every state to every other state, including a self-loop
- (p.73) Formal Definition of GNFA ( $\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\text {start }}$, $\mathrm{q}_{\text {accept }}$ )
- $\delta$ : $\left(Q-\left\{q_{\text {accept }}\right\}\right) \times\left(Q-\left\{q_{\text {start }}\right\}\right)->R$, where $R$ is all regex over $\Sigma$
- GNFA accepts $w$ if $w=w_{1} \ldots w_{k}$ where each $w_{i}$ string from $\Sigma^{*}$
- and sequence of states $q 0, \ldots$...qk such that
- $q 0=q_{\text {start }}, q k=q_{\text {final }}$
- $w_{i} \varepsilon L\left(R_{i}\right)$ where $R_{i}=\delta\left(q_{i-1}, q_{i}\right)$ (i.e. the label on the edge)
- (p. 71) Any DFA can be converted into GNFA
- Add new start state with $\varepsilon$ transition to old start
- Add new final state with $\varepsilon$ from all old final states
- If edge has multiple labels
- Replace by single edge with label = U of prior labels
- Add edge with $\phi$ between any states without an edge
- See Fig. 1-61: do conversion on paper to bigger NFA
- (p. 69) Lemma 1.60 If $A$ is regular, then describable by regex
- (p. 73) Proof by converting DFA M for A into GNFA G
- With k = \# states in G
- Then modify GNFA as follows
- If $\mathrm{k}=2$ then GNFA must have $\mathrm{q}_{\text {start }}$ and $\mathrm{q}_{\text {accept }}$ and edge between them is desired regex
- If $k>2$, repeat until $k=2$ : convert $G$ into $G^{\prime}$
- Select any start $q_{\text {rip }}$ other than $\mathrm{q}_{\text {start }}$ and $\mathrm{q}_{\text {accept }}$
- Define $G^{\prime}$ be GNFA where $Q^{\prime}=Q-\left\{q_{\text {rip }}\right\}$
- For each $q_{i}$ in $Q^{\prime}-q_{\text {start }}$ and $q_{j}$ in $Q^{\prime}-\left\{q_{\text {accept }}\right\}$
- $\delta^{\prime}\left(q_{i}, q_{j}\right)=(R 1)(R 2)^{*}(R 3) U(R 4)$ where
- $R 1=\delta\left(q_{i}, q_{r i p}\right)$ (label on edge from $q_{i}$ to $\left.q_{\text {rip }}\right)$
- $R 2=\delta\left(q_{\text {rip }}, q_{\text {rip }}\right)$ (label on edge on self loop $\left.q_{\text {rip }}\right)$
- $R 3=\delta\left(q_{\text {rip }}, q_{j}\right)$ (label on edge from $q_{\text {rip }}$ to $\left.q_{j}\right)$ )
- $R 4=\delta\left(q_{i}, q_{j}\right)$ (original label on edge from $q_{i}$ to $q_{j}$ )
- Eg.p. 75,76

