
1

Chap. 1.3 Regular Languages

• Language = set of strings from some alphabet

• Language L is accepted by FA M if after last symbol both:

• For any string in L, M ends in accept state

• For any string not in L, M does not end in accept state

• (p.44)Regular Language (RL): any language accepted by a FA

• Also called Regular Expressions (regex)

• Question: Is there a way of describing all, and only,

languages accepted by a FA? I.e. is there a syntax for RLs?

• Can we build “larger” languages from “smaller” ones?

• Answer to all above: YES

• (p.44) Possible set operations on languages A and B:

• Union: A U B = {x | xεA or xεB}

• Intersection: A ∩ A B {x | xεA and xεB}

• Complementation of B wrt A: A/B = {x| xεA and x not in B}

• (p.44) Possible operations on strings in languages

• Concatenation: A ◦ B = {xy |xy a string where xεA and yεB}

• Star: A* = { x|x = ε or x= x1x2 …xk where k≥1 and all xkεA }

• Plus: A+ = { x|x= x1x2 …xk where k≥1 and all xkεA }

• P. 45 Examples of above operations on some simple sets

2

• Fundamental Question: if we apply any of above

operations to known RLs, are we guaranteed to get

another RL?

• Are we guaranteed we can build an FA that accepts result

• Answer: YES if set of RLs is closed under the operation

• Closure: A set is closed under some operation if applying it

to any member(s) of the set returns another member of set

• i.e. can we build a FA (DFA or NFA) that accepts any language

created by applying specified operation

• Typical proof process: by construction

• Assume language A1 accepted by FA M1, A2 by M2:

• Show how to build an M (typically using M1 and M2 as

pieces) that accepts all strings from any combination of

sets A1 and A2 using that operation

• i.e Set of all RLs is closed under these operations

• Assume following in closure proofs

• A1 accepted by DFA M1, and M1 = (Q1, ∑, δ1, q1, F1)

• A2 accepted by DFA M2, and M2 = (Q2, ∑, δ2, q2, F1),

• Q1 ∩ Q2 = ф (i.e. no common states)

• We can always “rename” states to prevent confusion

3

• (p.45,46) Prove closure under U by constructing new DFA M

• Construct M = (Q, ∑, δ, q0, F)

• Q = Q1 x Q2

• i.e. states in M are “named” as tuples (r1, r2)

• r1 in Q1, r2 in Q2

• ∑ same for all 3 machines

• δ((r1,r2), a) = (δ1(r1,a), δ2(r2,a))

• q0 = (q1, q2)

• F = { (r1, r2) | r1εF1 or r2εF2}

• New machine keeps track of states of both machines

• If either ends up in their F, then accept

• If neither accept, then reject

• Do example: A1 = set of even # of a’s, A2 = odd # of b’s

• (p.47) To show we’ve proven closure, must show:

• If w is accepted by either M1 or M2, it is accepted by M

• If w is accepted by M, it is accepted by either M1 or M2

• Both of above are fairly obvious by construction

• Proof of closure under intersection is simple: change F!

4

• Since DFAs=NFAs, L is regular iff accepted by some NFA

• (p. 59-60) Alternative construction proof of U using NFAs

• A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1)

• A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1),

• Construct N = (Q, ∑, δ, q0, F) to recognize A1 U A2

• Q = {q0} U Q1 U Q2

• F = F1 U F2

• δ(q,a) =

• = δ1(q, a) if q ε Q1

• = δ2(q, a) if q ε Q2

• = {q1, q2} if q = q0 and a = ε

• = ф if q = q0 and a ≠ ε

• New starting state q0 “guesses correctly” which other

machine to start – without looking at any input

• Proving ◦ or * is “harder” – we don’t know when to stop string

from one language and start other!

• Really need nondeterminism!

5

• (p. 60) Proof that RLs are closed under concatenation

• See Fig. 1.48 on p. 61

• ε edge from each final state of N1 to start state of N2

• N “guesses” when to hop from N1 to N2

• A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1)

• A2 accepted by NFA N2, and N2 = (Q2, ∑, δ2, q2, F1)

• Construct N = (Q, ∑, δ, q0, F) to recognize A1 ◦ A2

• Q = Q1 U Q2

• q0 = q1 (from N1)

• F = F2 (from N2)

• δ(q,a) =

• = δ1(q, a) if q ε Q1 and q not in F1

• = δ1(q, a) if q ε F1 and a ≠ ε

• = δ1(q, a) U {q2} if q ε F1 and a = ε

• = δ2(q, a) if q ε Q2 and any a

6

• (p. 62) Proof that RLs are closed under Kleene star

• See Fig. 1.50 on p. 62

• Add ε edge from each final state back to start

• Again guess correctly when to restart N1

• A1 accepted by NFA N1, and N1 = (Q1, ∑, δ1, q1, F1)

• Construct N = (Q, ∑, δ, q0, F) to recognize A1*

• Q = {q0} U Q1

• q0 = a new state

• F = {q0} U F1

• {q0} for empty set when 0 copies

• δ(q,a) =

• = δ1(q, a) if q ε Q1 and q not in F1

• = δ1(q, a) if q ε F1 and a ≠ ε

• = δ1(q, a) U {q1} if q ε F1 and a = ε

• = {q1}

• = ф if q = Q0 and a ≠ ε

7

• (p63 – Section 1.3) Regular Expressions

• Example: describing arithmetic expressions:

<op1> -> + | -

<op2> -> * | /

<factor> -> <number> | (<arith-expr>) | <factor>^<factor>

<term> -> <factor> | <term> <op2> <factor>

< arith-expr > -> <term> | < arith-expr > <op1> <term>

• Notice this defines a precedence for operators:

• Do inside () first

• Do ^ next

• Do * or / next before + or –

• Do + or - last

8

• (p. 64) Describing regular expressions R (no precedence)

<regex > -> ɸ | ε | … any member of ∑ …

| (<regex > U <regex >)

| (<regex > ◦ <regex >)

| (<regex>*)

• Note: this demands () all the time

• No assumed precedence

• Normal Precedence rules – drop unnecessary ()

• Do inside () first

• Do * first, then ◦, then U

• Examples p. 65 Example 1.53

• Redo of BNF to “build-in” precedence

<basic-regex> -> ɸ | ε | … any member of ∑ …

<regex-factor> -> <basic-regex> | (<regex>)

| <regex-factor>*

<regex-term> -> <regex-factor>

| <regex-term> ◦ < regex-factor >

<regex > -> <regex-term>

 | <regex> U <regex>

9

• Examples p. 65

• (p. 66) Identities: for all R

• R U ɸ = R. Adding empty language to any other does not

change it

• R ◦ ε = R. Concatenating the empty string to any string in a

language does not change R

• (p. 66) Non-identities

• R U ε may be different from R.

• E.g. R = 0 so L(R) = {0}, but L(R U ε) = {0, ε}

• R ◦ ɸ may be different from R.

• E.g. R = 0 so L(R) = {0}, but L(R ◦ ɸ) = ɸ

• There are no strings to concatenate on right

• (p.66) Regex for <number> as defined above

• D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• (+ U – U ε) (D+ U D+.D* U D*.D+)

10

• (p. 66) Theorem 1.54: A language is regular iff a regular

expression describes it.

• Remember all RLs eqvt to FA

• Lemma 1.55: If L described by a regex R, its regular

• (p. 67) Proof by construction of an NFA: 6 cases

• (p. 68, 69) Ex. 1.56, 1.57, 1.58, 1.59

• Lemma 1.60 (p. 69): If L is regular then it is described by a

regex

• Proof by construction from DFA to GNFA to regex

• Generalized NFAs (GNFA)

• NFA where edges may have arbitrary regex on them

• We know that any regex can be converted into an NFA

• Thus could replace each such edge with a small NFA

• Start state as transitions to every other state but no

incoming

• Only one accept state with transitions incoming from

all others but no outgoing

• Start and accept states must be different

• Except for start and accept, transition from every

state to every other state, including a self-loop

11

• (p. 73) Formal Definition of GNFA (Q, ∑, δ, qstart, qaccept)

• δ: (Q-{qaccept}) x (Q-{qstart}) -> R, where R is all regex over ∑

• GNFA accepts w if w=w1…wk where each wi string from ∑*

• and sequence of states q0,…qk such that

• q0 = qstart, qk = qfinal

• wi ε L(Ri) where Ri = δ(qi-1, qi) (i.e. the label on the edge)

• (p. 71) Any DFA can be converted into GNFA

• Add new start state with ε transition to old start

• Add new final state with ε from all old final states

• If edge has multiple labels

• Replace by single edge with label = U of prior labels

• Add edge with ɸ between any states without an edge

• See Fig. 1-61: do conversion on paper to bigger NFA

• (p. 69) Lemma 1.60 If A is regular, then describable by regex

• (p. 73) Proof by converting DFA M for A into GNFA G

• With k = # states in G

• Then modify GNFA as follows

• If k=2 then GNFA must have qstart and qaccept and edge

between them is desired regex

• If k>2, repeat until k=2: convert G into G’

• Select any start qrip other than qstart and qaccept

• Define G’ be GNFA where Q’ = Q – {qrip}

• For each qi in Q’ - qstart and qj in Q’ – {qaccept}

12

• δ’(qi,qj) = (R1)(R2)*(R3) U (R4) where

• R1 = δ(qi,qrip) (label on edge from qi to qrip)

• R2 = δ(qrip,qrip) (label on edge on self loop qrip)

• R3 = δ(qrip,qj) (label on edge from qrip to qj))

• R4 = δ(qi,qj) (original label on edge from qi to qj)

• Eg. p. 75,76

