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pp. 275-284. Complexity (Sec. 7.1) 

• Definition 7.1. Running Time or Time complexity 

• M is a deterministic TM that halts on all inputs 

• fM:N->N maps for machine M length n into max # of steps 

M takes to solve any string of length n for which it halts 

• Usually drop subscript 

• We say that M is an f(n) time TM 

• Definition 7.2 We say f(n) = O(g(n)) if 

• f,g functions N->R+ 

• there are positive ints c and n0 such that 

• f(n) ≤ cg(n) for all n>n0  

• g(n) said to be an asymptotic upper bound  

• Notes on “big O” 

• “O” of polynomials = largest exponent 

• loga(n) differs by a constant value from logb(n) for any a,b 

• Thus O(loga(n)) =  O(logb(n)) = O(log(n)) 

• polynomial bounds if O(nc) 

• exponential bounds if O(2^nδ) 

• “Little o” Def 7.5: f(n) = o(g(n)) if limn->∞(f(n)/g(n)) = 0 

• for any c, there is some n0 such that f(n) < cg(n0) for n>n0 

• f(n) is asymptotically less than g(n) 
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• (p. 279) Time Complexity class: 

• TIME(t(n)) = set of all languages decidable by O(t(n)) TM 

• Time(n) called “Linear Time” 

• Example: A ={0k1k|k≥0} 

• M1 with input w, |w|=n 

1. O(n) Scan tape & reject if 0 to right of a 1 

2. O(n) repetitions:  Repeat if both 0s and 1s on tape 

3. O(n) each: Scan tape, crossing off one 0 and one 1 

4. O(n) If 0s remain after all 1s, or vv, reject. Else accept 

• Time = O(n) + O(n2) + O(n) = O(n2) 

• Thus A in TIME(n2). Anything better? 

• M2 with input w, |w|=n  

1. O(n) Scan tape & reject if 0 to right of a 1 

2. O(log(n)) repetitions Repeat if both 0s and 1s on tape 

3. O(n) each: Scan tape to see if even or odd #s of 0s 

& 1s. If odd, reject 

4. O(n) each: scan tape, crossing off every other 0, 

then every other 1 

5. O(n) if no 0s or 1s, accept, else reject 

• Time = O(n) + O(log(n))*O(n) + O(n) = O(n log(n)) 

• Thus A now in TIME(nlog(n)). Anything better? 
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• 2-tape TM M3 can solve in O(n) time!  

• M3 with input w on tape 1, |w|=n  

1. O(n) Scan tape & reject if 0 to right of a 1 

2. O(n) scan tape 1 to 1st 1, copying all 0s to tape 2 

3. O(n) each: Scan tape 1. For each 1, cross off a 0 from 

tape 2. If all 0s crossed off before all 1s, reject 

4. O(n): If all 1s off tape1, & no 0s on tape2, accept, else 

reject 

• Thus A in TIME2tape(n) 

• Generalization: (Problem 7.49): any language 

decidable in o(nlog(n)) on single tape TM is regular  
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• (p. 282) Theorem 2.8. Every O(t(n)) multi-tape TM has 

an equivalent O(t2(n)) 1 tape TM  

• Assume M = k-tape TM with O(t(n)) time 

• Let S = equivalent 1-tape machines 

• S’s 1st step: initialize its 1 tape to store k tapes 

• Use “#” to separate and “’” to show tape head 

• For each of M’s O(t(n)) steps, S performs 

• O(t(n)): scan tape to find current values under heads 

• O(t(n)): scan tape again to update each of k tapes 

• If any of M’s tapes writes into blank area, shift rest of 

simulated tapes 1 cell right 

• Total is O(t(n))*O(t(n)) = O(t2(n)) 
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• (p. 283) Definition 7.9: Running time of a NTM (1-

tape) decider is f:N->N where f(n) is max # steps for an 

input of length n on any branch of computation tree. 

• See Fig. 7.10 on p. 283 

• (p. 284) Theorem 7.11. Let t(n) be a function where 

t(n) >n. Every t(n) NTM (1-tape) has equivalent 2O(t(n)) 

time deterministic 1-tape TM. 

• Proof: given input of length n 

• Each branch of NTM computation of length t(n) 

• If b=max # of choices in each tree of computation 

• Then # of leaves at most bt(n) 

• TM simulator D (Theorem 3.16) uses 3-tapes and visits 

all choices at depth d before going to depth d+1 

• Total # nodes in tree < 2X # leaves, so bound as O(bt(n)) 

• Time from root to node is O(t(n)) 

• Running time of D is O(t(n)bt(n)) = 2O(t(n)) 

• Simulating on 1-tape squares time: (2O(t(n)))2 = 2O(t(n)) 

• Sample problems: 

• O notation: 7.1 

• o notation: 7.2 


