pp. 275-284. Complexity (Sec. 7.1)

- Definition 7.1. Running Time or Time complexity
 - M is a deterministic TM that halts on all inputs
 - f_M:N->N maps for machine M length n into max # of steps
 M takes to solve any string of length n for which it halts
 - Usually drop subscript
 - We say that M is an f(n) time TM
- Definition 7.2 We say f(n) = O(g(n)) if
 - f,g functions N->R⁺
 - there are positive ints c and n₀ such that
 - $f(n) \le cg(n)$ for all $n > n_0$
 - g(n) said to be an **asymptotic upper bound**
- Notes on "big O"
 - "O" of polynomials = largest exponent
 - log_a(n) differs by a constant value from log_b(n) for any a,b
 - Thus $O(\log_a(n)) = O(\log_b(n)) = O(\log(n))$
 - polynomial bounds if O(n^c)
 - **exponential bounds** if O(2ⁿδ)
- "Little o" Def 7.5: f(n) = o(g(n)) if $\lim_{n\to\infty} (f(n)/g(n)) = 0$
 - for any c, there is some n₀ such that f(n) < cg(n₀) for n>n₀
 - f(n) is asymptotically less than g(n)

- (p. 279) Time Complexity class:
 - **TIME(t(n))** = set of all languages decidable by O(t(n)) TM
 - Time(n) called "Linear Time"
- Example: $A = \{0^{k}1^{k} | k \ge 0\}$
 - M1 with input w, |w|=n
 - 1. O(n) Scan tape & reject if 0 to right of a 1
 - 2. O(n) repetitions: Repeat if both 0s and 1s on tape
 - 3. O(n) each: Scan tape, crossing off one 0 and one 1
 - 4. O(n) If Os remain after all 1s, or vv, reject. Else accept
 - Time = $O(n) + O(n^2) + O(n) = O(n^2)$
 - Thus A in TIME(n²). Anything better?
 - M2 with input w, |w|=n
 - 1. O(n) Scan tape & reject if 0 to right of a 1
 - 2. O(log(n)) repetitions Repeat if both 0s and 1s on tape
 - 3. O(n) each: Scan tape to see if even or odd #s of 0s
 & 1s. If odd, reject
 - 4. O(n) each: scan tape, crossing off every other 0, then every other 1
 - 5. O(n) if no 0s or 1s, accept, else reject
 - Time = O(n) + O(log(n))*O(n) + O(n) = O(n log(n))
 - Thus A now in TIME(nlog(n)). Anything better?

- 2-tape TM M3 can solve in O(n) time!
 - M3 with input w on tape 1, |w|=n
 - 1. O(n) Scan tape & reject if 0 to right of a 1
 - 2. O(n) scan tape 1 to 1st 1, copying all 0s to tape 2
 - 3. O(n) each: Scan tape 1. For each 1, cross off a 0 from tape 2. If all 0s crossed off before all 1s, reject
 - 4. O(n): If all 1s off tape1, & no 0s on tape2, accept, else reject
 - Thus A in TIME_{2tape}(n)
- Generalization: (Problem 7.49): any language decidable in o(nlog(n)) on single tape TM is regular

(p. 282) Theorem 2.8. Every O(t(n)) multi-tape TM has an equivalent O(t²(n)) 1 tape TM

- Assume M = k-tape TM with O(t(n)) time
- Let S = equivalent 1-tape machines
- S's 1st step: initialize its 1 tape to store k tapes
 - Use "#" to separate and """ to show tape head
- For each of M's O(t(n)) steps, S performs
 - O(t(n)): scan tape to find current values under heads
 - O(t(n)): scan tape again to update each of k tapes
 - If any of M's tapes writes into blank area, shift rest of simulated tapes 1 cell right
- Total is O(t(n))*O(t(n)) = O(t²(n))

- (p. 283) Definition 7.9: Running time of a NTM (1tape) decider is f:N->N where f(n) is max # steps for an input of length n on any branch of computation tree.
 - See Fig. 7.10 on p. 283
- (p. 284) Theorem 7.11. Let t(n) be a function where t(n) >n. Every t(n) NTM (1-tape) has equivalent 2^{O(t(n))} time deterministic 1-tape TM.
 - Proof: given input of length n
 - Each branch of NTM computation of length t(n)
 - If b=max # of choices in each tree of computation
 - Then # of leaves at most b^{t(n)}
 - TM simulator D (Theorem 3.16) uses 3-tapes and visits all choices at depth d before going to depth d+1
 - Total # nodes in tree < 2X # leaves, so bound as O(b^{t(n)})
 - Time from root to node is O(t(n))
 - Running time of D is $O(t(n)b^{t(n)}) = 2^{O(t(n))}$
 - Simulating on 1-tape squares time: $(2^{O(t(n))})^2 = 2^{O(t(n))}$
- Sample problems:
 - O notation: 7.1
 - o notation: 7.2