
1

pp. 275-284. Complexity (Sec. 7.1)

• Definition 7.1. Running Time or Time complexity

• M is a deterministic TM that halts on all inputs

• fM:N->N maps for machine M length n into max # of steps

M takes to solve any string of length n for which it halts

• Usually drop subscript

• We say that M is an f(n) time TM

• Definition 7.2 We say f(n) = O(g(n)) if

• f,g functions N->R+

• there are positive ints c and n0 such that

• f(n) ≤ cg(n) for all n>n0

• g(n) said to be an asymptotic upper bound

• Notes on “big O”

• “O” of polynomials = largest exponent

• loga(n) differs by a constant value from logb(n) for any a,b

• Thus O(loga(n)) = O(logb(n)) = O(log(n))

• polynomial bounds if O(nc)

• exponential bounds if O(2^nδ)

• “Little o” Def 7.5: f(n) = o(g(n)) if limn->∞(f(n)/g(n)) = 0

• for any c, there is some n0 such that f(n) < cg(n0) for n>n0

• f(n) is asymptotically less than g(n)

2

• (p. 279) Time Complexity class:

• TIME(t(n)) = set of all languages decidable by O(t(n)) TM

• Time(n) called “Linear Time”

• Example: A ={0k1k|k≥0}

• M1 with input w, |w|=n

1. O(n) Scan tape & reject if 0 to right of a 1

2. O(n) repetitions: Repeat if both 0s and 1s on tape

3. O(n) each: Scan tape, crossing off one 0 and one 1

4. O(n) If 0s remain after all 1s, or vv, reject. Else accept

• Time = O(n) + O(n2) + O(n) = O(n2)

• Thus A in TIME(n2). Anything better?

• M2 with input w, |w|=n

1. O(n) Scan tape & reject if 0 to right of a 1

2. O(log(n)) repetitions Repeat if both 0s and 1s on tape

3. O(n) each: Scan tape to see if even or odd #s of 0s

& 1s. If odd, reject

4. O(n) each: scan tape, crossing off every other 0,

then every other 1

5. O(n) if no 0s or 1s, accept, else reject

• Time = O(n) + O(log(n))*O(n) + O(n) = O(n log(n))

• Thus A now in TIME(nlog(n)). Anything better?

3

• 2-tape TM M3 can solve in O(n) time!

• M3 with input w on tape 1, |w|=n

1. O(n) Scan tape & reject if 0 to right of a 1

2. O(n) scan tape 1 to 1st 1, copying all 0s to tape 2

3. O(n) each: Scan tape 1. For each 1, cross off a 0 from

tape 2. If all 0s crossed off before all 1s, reject

4. O(n): If all 1s off tape1, & no 0s on tape2, accept, else

reject

• Thus A in TIME2tape(n)

• Generalization: (Problem 7.49): any language

decidable in o(nlog(n)) on single tape TM is regular

4

• (p. 282) Theorem 2.8. Every O(t(n)) multi-tape TM has

an equivalent O(t2(n)) 1 tape TM

• Assume M = k-tape TM with O(t(n)) time

• Let S = equivalent 1-tape machines

• S’s 1st step: initialize its 1 tape to store k tapes

• Use “#” to separate and “’” to show tape head

• For each of M’s O(t(n)) steps, S performs

• O(t(n)): scan tape to find current values under heads

• O(t(n)): scan tape again to update each of k tapes

• If any of M’s tapes writes into blank area, shift rest of

simulated tapes 1 cell right

• Total is O(t(n))*O(t(n)) = O(t2(n))

5

• (p. 283) Definition 7.9: Running time of a NTM (1-

tape) decider is f:N->N where f(n) is max # steps for an

input of length n on any branch of computation tree.

• See Fig. 7.10 on p. 283

• (p. 284) Theorem 7.11. Let t(n) be a function where

t(n) >n. Every t(n) NTM (1-tape) has equivalent 2O(t(n))

time deterministic 1-tape TM.

• Proof: given input of length n

• Each branch of NTM computation of length t(n)

• If b=max # of choices in each tree of computation

• Then # of leaves at most bt(n)

• TM simulator D (Theorem 3.16) uses 3-tapes and visits

all choices at depth d before going to depth d+1

• Total # nodes in tree < 2X # leaves, so bound as O(bt(n))

• Time from root to node is O(t(n))

• Running time of D is O(t(n)bt(n)) = 2O(t(n))

• Simulating on 1-tape squares time: (2O(t(n)))2 = 2O(t(n))

• Sample problems:

• O notation: 7.1

• o notation: 7.2

