pp. 275-284. Complexity (Sec. 7.1)

- Definition 7.1. Running Time or Time complexity
- M is a deterministic TM that halts on all inputs
- $f_{M}: N->N$ maps for machine M length n into max \# of steps M takes to solve any string of length n for which it halts
- Usually drop subscript
- We say that M is an $f(n)$ time TM
- Definition 7.2 We say $f(n)=O(g(n))$ if
- f,g functions N -> R^{+}
- there are positive ints c and n_{0} such that
- $f(n) \leq c g(n)$ for all $n>n_{0}$
- $g(n)$ said to be an asymptotic upper bound
- Notes on "big O"
- "O" of polynomials = largest exponent
- $\log _{a}(n)$ differs by a constant value from $\log _{b}(n)$ for any a, b
- Thus $O\left(\log _{a}(n)\right)=O\left(\log _{b}(n)\right)=O(\log (n))$
- polynomial bounds if $O\left(n^{c}\right)$
- exponential bounds if $\mathrm{O}\left(2^{\wedge} \mathrm{n}^{\delta}\right)$
- "Little o" Def 7.5: $f(n)=0(g(n))$ if $\lim _{n \rightarrow \infty}(f(n) / g(n))=0$
- for any c, there is some n_{0} such that $f(n)<c g\left(n_{0}\right)$ for $n>n_{0}$
- $f(n)$ is asymptotically less than $g(n)$
- (p. 279) Time Complexity class:
- TIME(t(n)) = set of all languages decidable by O(t(n)) TM
- Time(n) called "Linear Time"
- Example: $\mathrm{A}=\left\{0^{\mathrm{k}} 1^{\mathrm{k}} \mid \mathrm{k} \geq 0\right\}$
- M1 with input w, $|w|=n$

1. O (n) Scan tape \& reject if 0 to right of a 1
2. $O(n)$ repetitions: Repeat if both $0 s$ and $1 s$ on tape 3. $O(n)$ each: Scan tape, crossing off one 0 and one 1
3. O(n) If Os remain after all 1 s , or vv , reject. Else accept

- Time $=O(n)+O\left(n^{2}\right)+O(n)=O\left(n^{2}\right)$
- Thus A in TIME($\left.n^{2}\right)$. Anything better?
- M2 with input w, $|w|=n$

1. O (n) Scan tape $\&$ reject if 0 to right of a 1
2. $O(\log (n))$ repetitions Repeat if both $0 s$ and 1 s on tape 3. O(n) each: Scan tape to see if even or odd \#s of Os \& 1s. If odd, reject
3. O(n) each: scan tape, crossing off every other 0 , then every other 1
4. O(n) if no 0s or 1s, accept, else reject

- Time $=O(n)+O(\log (n)) * O(n)+O(n)=O(n \log (n))$
- Thus A now in TIME(nlog(n)). Anything better?
- 2-tape TM M3 can solve in $\mathrm{O}(\mathrm{n})$ time!
- M3 with input w on tape 1, $|\mathrm{w}|=n$

1. $\mathrm{O}(\mathrm{n})$ Scan tape \& reject if 0 to right of a 1
2. O (n) scan tape 1 to $1^{\text {st }} 1$, copying all 0 s to tape 2
3. $\mathrm{O}(\mathrm{n})$ each: Scan tape 1 . For each 1 , cross off a 0 from tape 2. If all 0 s crossed off before all 1 s , reject
4. O(n): If all 1s off tape1, \& no 0s on tape2, accept, else reject

- Thus A in TIME $_{2 \text { tape }}(\mathrm{n})$
- Generalization: (Problem 7.49): any language decidable in o(nlog(n)) on single tape TM is regular
- (p. 282) Theorem 2.8. Every O(t(n)) multi-tape TM has an equivalent $O\left(\mathrm{t}^{2}(\mathrm{n})\right) 1$ tape TM
- Assume $M=k$-tape $T M$ with $O(t(n))$ time
- Let $S=$ equivalent 1-tape machines
- $\mathrm{S}^{\prime} \mathrm{s} 1^{\text {st }}$ step: initialize its 1 tape to store k tapes
- Use " $\#$ " to separate and """ to show tape head
- For each of M 's $O(t(n))$ steps, S performs
- $\mathbf{O (t (n)})$: scan tape to find current values under heads
- $\mathbf{O}(\mathbf{t}(\mathbf{n}))$: scan tape again to update each of k tapes
- If any of M's tapes writes into blank area, shift rest of simulated tapes 1 cell right
- Total is $\mathrm{O}(\mathrm{t}(\mathrm{n}))^{*} \mathrm{O}(\mathrm{t}(\mathrm{n}))=\mathrm{O}\left(\mathrm{t}^{2}(\mathrm{n})\right)$
- (p. 283) Definition 7.9: Running time of a NTM (1tape) decider is $f: N->N$ where $f(n)$ is max \# steps for an input of length n on any branch of computation tree.
- See Fig. 7.10 on p. 283
- (p. 284) Theorem 7.11. Let $\mathrm{t}(\mathrm{n})$ be a function where $\mathrm{t}(\mathrm{n})>\mathrm{n}$. Every $\mathrm{t}(\mathrm{n})$ NTM (1-tape) has equivalent $\mathbf{2}^{\mathbf{0 (t (n))}}$ time deterministic 1-tape TM.
- Proof: given input of length n
- Each branch of NTM computation of length $t(n)$
- If $b=m a x$ \# of choices in each tree of computation
- Then \# of leaves at most $\mathrm{b}^{(\mathrm{n})}$
- TM simulator D (Theorem 3.16) uses 3-tapes and visits all choices at depth d before going to depth $\mathrm{d}+1$
- Total \# nodes in tree $<2 \mathrm{X}$ \# leaves, so bound as $\mathrm{O}\left(\mathrm{b}^{\mathrm{t(n)}}\right)$
- Time from root to node is $\mathrm{O}(\mathrm{t}(\mathrm{n})$)
- Running time of D is $O\left(t(n) b^{t(n)}\right)=2^{0(t(n))}$
- Simulating on 1-tape squares time: $\left(2^{0(t(n))}\right)^{2}=2^{0(t(n))}$
- Sample problems:
- O notation: 7.1
- o notation: 7.2

