Definition 7.1. **Running Time or Time complexity**

- M is a deterministic TM that halts on all inputs
- \(f_M : \mathbb{N} \rightarrow \mathbb{N} \) maps for machine M length \(n \) into max # of steps M takes to solve any string of length \(n \) for which it halts
 - Usually drop subscript
- We say that M is an \(f(n) \) time TM

Definition 7.2 We say \(f(n) = O(g(n)) \) if

- \(f, g \) functions \(\mathbb{N} \rightarrow \mathbb{R}^+ \)
- there are positive ints \(c \) and \(n_0 \) such that
- \(f(n) \leq cg(n) \) for all \(n > n_0 \)
- \(g(n) \) said to be an asymptotic upper bound

Notes on “big O”

- “O” of polynomials = largest exponent
- \(\log_a(n) \) differs by a constant value from \(\log_b(n) \) for any \(a, b \)
 - Thus \(O(\log_a(n)) = O(\log_b(n)) = O(\log(n)) \)
- polynomial bounds if \(O(n^c) \)
- exponential bounds if \(O(2^{\delta n}) \)

“Little o” Def 7.5: \(f(n) = o(g(n)) \) if \(\lim_{n \to \infty} (f(n)/g(n)) = 0 \)

- for any \(c \), there is some \(n_0 \) such that \(f(n) < cg(n_0) \) for \(n > n_0 \)
- \(f(n) \) is asymptotically less than \(g(n) \)
• (p. 279) **Time Complexity class:**

 • **TIME(t(n))** = set of all languages decidable by \(O(t(n))\) TM

 • Time(n) called "Linear Time"

• Example: \(A = \{0^k1^k | k \geq 0\}\)

 • M1 with input \(w, |w| = n\)

 1. **\(O(n)\)** Scan tape & reject if 0 to right of a 1
 2. **\(O(n)\) repetitions:** Repeat if both 0s and 1s on tape

 3. **\(O(n)\)** each: Scan tape, crossing off one 0 and one 1
 4. **\(O(n)\)** If 0s remain after all 1s, or vv, reject. Else accept

 • Time = \(O(n) + O(n^2) + O(n) = O(n^2)\)

 • Thus \(A\) in \(TIME(n^2)\). Anything better?

 • M2 with input \(w, |w| = n\)

 1. **\(O(n)\)** Scan tape & reject if 0 to right of a 1
 2. **\(O(\log(n))\) repetitions** Repeat if both 0s and 1s on tape

 3. **\(O(n)\)** each: Scan tape to see if even or odd #s of 0s & 1s. If odd, reject
 4. **\(O(n)\) each:** scan tape, crossing off every other 0, then every other 1
 5. **\(O(n)\)** if no 0s or 1s, accept, else reject

 • Time = \(O(n) + O(\log(n)) \times O(n) + O(n) = O(n \log(n))\)

 • Thus \(A\) now in \(TIME(n \log(n))\). Anything better?
• 2-tape TM M3 can solve in $O(n)$ time!
 • M3 with input w on tape 1, $|w|=n$
 1. $O(n)$ Scan tape & reject if 0 to right of a 1
 2. $O(n)$ scan tape 1 to 1st 1, copying all 0s to tape 2
 3. $O(n)$ each: Scan tape 1. For each 1, cross off a 0 from
 tape 2. If all 0s crossed off before all 1s, reject
 4. $O(n)$: If all 1s off tape1, & no 0s on tape2, accept, else
 reject
 • Thus A in $\text{TIME}_{2\text{tape}}(n)$

• Generalization: (Problem 7.49): any language
 decidable in $o(n\log(n))$ on single tape TM is regular
(p. 282) **Theorem 2.8.** Every $O(t(n))$ multi-tape TM has an equivalent $O(t^2(n))$ 1 tape TM

- Assume $M = k$-tape TM with $O(t(n))$ time
- Let $S = $ equivalent 1-tape machines
- S’s 1st step: initialize its 1 tape to store k tapes
 - Use “#” to separate and “’” to show tape head
- For each of M’s $O(t(n))$ steps, S performs
 - $O(t(n))$: scan tape to find current values under heads
 - $O(t(n))$: scan tape again to update each of k tapes
 - If any of M’s tapes writes into blank area, shift rest of simulated tapes 1 cell right
- Total is $O(t(n))*O(t(n)) = O(t^2(n))$
• (p. 283) Definition 7.9: **Running time of a NTM** (1-tape) decider is f:N->N where f(n) is max # steps for an input of length n on any branch of computation tree.
 • See Fig. 7.10 on p. 283

• (p. 284) **Theorem 7.11.** Let t(n) be a function where t(n) >n. Every t(n) NTM (1-tape) has equivalent $2^{O(t(n))}$ time deterministic 1-tape TM.
 • Proof: given input of length n
 • Each branch of NTM computation of length t(n)
 • If b=max # of choices in each tree of computation
 • Then # of leaves at most $b^{t(n)}$
 • TM simulator D (Theorem 3.16) uses 3-tapes and visits all choices at depth d before going to depth d+1
 • Total # nodes in tree < 2X # leaves, so bound as $O(b^{t(n)})$
 • Time from root to node is $O(t(n))$
 • Running time of D is $O(t(n)b^{t(n)}) = 2^{O(t(n))}$
 • Simulating on 1-tape squares time: $(2^{O(t(n))})^2 = 2^{O(t(n))}$

• Sample problems:
 • O notation: 7.1
 • o notation: 7.2