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TMs & Languages (end of Sec. 3.1 & Sec. 4.1) 

• (p. 170) TMs and Languages 

• L(M) = set of strings accepted by TM M 

• L is Turing-recognizable if some TM M accepts it 

• When M started, 3 outcomes: Accept, Reject, Loops 

• M can fail to accept if it enters qreject or loops 

• (p. 170) M is a decider is it never loops 

• I.E. always stops, regardless of input string 

• I.e. always ends up in either qaccept
 or qreject 

•  (p. 170) L is Turing-decidable (or simply decidable) if 

some Turing Machine decides it. 

• Examples 

• (p. 171 Ex. 3.7) A = (0k | k=2n, n ≥ 0} 

• Multiple iterations, each cuts # 0s in half 

• (p.173 Ex. 3.9) B = {w#w | w in {0,1}*} 

• (p. 174 Ex. 3.11) C = {aibjck | ixj=k, i,j,k ≥1} 

• (p.175 Ex. 3.12} E = {#x1#x2# …#xl | no two x’s are equal} 
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•  (p. 194) Acceptance problem: does some DFA accept 

some string? 

• Can we build a TM that: 

• given a representation for some FA and some string, 

• tell us if that FA accepts the string, or not 

• and do so in finite time 

• and never loop 
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• Define ADFA = {<B,w>| B is a DFA that accepts w} 

• <B,w> is “encoding” of DFA B and string w in a way that a 

TM can “interpret” B’s processing of w 

• E.g. <B> is a list of B’s 5 components  

• ADFA is set of all encoded DFAs & the strings they accept 

• Is ADFA decidable? 

• Does there exist a TM that accepts all members of ADFA 

and rejects all other inputs? 

• I.e. does it always halt 

• (p. 194) Theorem 4.1: ADFA is decidable 

• Proof: M = “On input <B,w> where B is a DFA & w a string” 

• M receives a tape with <B,w> on it 

• Determine if representation of <B> is formatted ok 

• Simulate DFA B on string w 

• Keep track of B’s current state and position into its 

input w on M’s tape 

• Search for correct transition 

• Update state and index 

• If simulated B ends in accept, accept. If it ends in 

nonaccept, reject. 

• Note: formatted B always stops after finite # of steps 

• Thus so will TM 
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• Define ANFA = {<B,w>| B is an NFA that accepts w} 

• (p. 195) Theorem 4.2: ANFA is decidable  

• Proof: N = “On input <B,w> where B is  NFA & w a string” 

• Convert NFA B into equivalent DFA C 

• Encode C and w on tape as <C,w> 

• Having a multi-tape TM may be useful 

• Run machine M from Theorem 4.1 on <C,w> 

• If M accepts, N accepts, else N rejects 

• Note use of a “subroutine” M 

 

• Define AREX = {<R,w>| R is a regex that generates w} 

• (p. 196) Theorem 4.3 AREX is decidable   

• Proof: Convert R into an NFA 

• Then run TM N 

• If N accepts, then accept, else reject  
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• Define EDFA = {<A>| A is a DFA where L(A) = Φ} 

• “E” for “empty” 

• I.e. the set of all DFAs that accept no strings 

• (p. 196) Theorem 4.4 EDFA is decidable   

• Proof: Use the BFS algorithm starting on start state of A 

• Mark states that are reachable from start state 

• If any Final State is marked, reject 

• If not, accept 

• Again will halt since only finite # of states in any DFA 

 

• Define EQDFA = {<A,B>| A,B both DFAs & L(A) = L(B)} 

• “EQ” stands for Equivalent 

• I.e. the set of all pairs of DFAs that are equivalent 

• (p. 196) Theorem 4.5 EQDFA is decidable   

• Proof:  

• Construct a new DFA C from A and B that 

• Accepts only those strings that are accepted by either 

A or B, but not both  

• i.e. L(C) = (L(A) ∩ not(L(B))) U (not(L(A)) ∩ L(B)) 

• Called Symmetric Difference 

• If L(C) is empty then A & B gen same language 

• Then use machine from Theorem 4.4 
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• (p. 198) Decidable Problems re CFLs 

 

• Define ACFG = {<G,w>|G is a CFG that generates w} 

• (p. 198) Theorem 4.7 ACFG is a decidable language 

• If G is in Chomsky Normal Form, any derivation of w has 

2n-1 steps, where |w|=n 

• TM S 

• Convert G to Chomsky 

• List all derivations with 2n-1 steps 

• If any generate w, accept, else reject 

 

• Define ECFG = {<G>|G is a CFG & L(G) = Φ}  

• (p. 199) Theorem 4.8 ECFG is a decidable language 

• TM R 

• Mark all terminal symbols in G 

• Repeat until no new variables get marked 

• Mark any variable A where G has a rule A->U1U2…Uk  

and each symbol Ui has already been marked 

• If start variable not marked, accept, else reject 
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• Define EQCFG = {<G,H>|G & H are CFGs, & L(G)=L(H)}  

• Cannot use DFA approach because CFLs not closed under 

complement or intersection &  this is NOT decidable 

• (p. 200) Theorem 4.9 Every CFL is decidable  

• Don’t want to try converting a PDA into an TM 

• Some branches of PDAs computation may go on 

forever, so TM can’t be a decider 

• Proof: Let G be a CFG for A; TM MG is to decide A 

• Run TM S on <G,w> 

• If it accepts, then accept, else reject 

 

• Result: p.201 Fig. 4.10. Following are proper subsets of 

the next one 

• Regular languages 

• Context-Free languages 

• Decidable Languages 

• Turing-recognizable languages 


