
1

TMs & Languages (end of Sec. 3.1 & Sec. 4.1)

• (p. 170) TMs and Languages

• L(M) = set of strings accepted by TM M

• L is Turing-recognizable if some TM M accepts it

• When M started, 3 outcomes: Accept, Reject, Loops

• M can fail to accept if it enters qreject or loops

• (p. 170) M is a decider is it never loops

• I.E. always stops, regardless of input string

• I.e. always ends up in either qaccept
 or qreject

• (p. 170) L is Turing-decidable (or simply decidable) if

some Turing Machine decides it.

• Examples

• (p. 171 Ex. 3.7) A = (0k | k=2n, n ≥ 0}

• Multiple iterations, each cuts # 0s in half

• (p.173 Ex. 3.9) B = {w#w | w in {0,1}*}

• (p. 174 Ex. 3.11) C = {aibjck | ixj=k, i,j,k ≥1}

• (p.175 Ex. 3.12} E = {#x1#x2# …#xl | no two x’s are equal}

2

• (p. 194) Acceptance problem: does some DFA accept

some string?

• Can we build a TM that:

• given a representation for some FA and some string,

• tell us if that FA accepts the string, or not

• and do so in finite time

• and never loop

3

• Define ADFA = {<B,w>| B is a DFA that accepts w}

• <B,w> is “encoding” of DFA B and string w in a way that a

TM can “interpret” B’s processing of w

• E.g. is a list of B’s 5 components

• ADFA is set of all encoded DFAs & the strings they accept

• Is ADFA decidable?

• Does there exist a TM that accepts all members of ADFA

and rejects all other inputs?

• I.e. does it always halt

• (p. 194) Theorem 4.1: ADFA is decidable

• Proof: M = “On input <B,w> where B is a DFA & w a string”

• M receives a tape with <B,w> on it

• Determine if representation of is formatted ok

• Simulate DFA B on string w

• Keep track of B’s current state and position into its

input w on M’s tape

• Search for correct transition

• Update state and index

• If simulated B ends in accept, accept. If it ends in

nonaccept, reject.

• Note: formatted B always stops after finite # of steps

• Thus so will TM

4

• Define ANFA = {<B,w>| B is an NFA that accepts w}

• (p. 195) Theorem 4.2: ANFA is decidable

• Proof: N = “On input <B,w> where B is NFA & w a string”

• Convert NFA B into equivalent DFA C

• Encode C and w on tape as <C,w>

• Having a multi-tape TM may be useful

• Run machine M from Theorem 4.1 on <C,w>

• If M accepts, N accepts, else N rejects

• Note use of a “subroutine” M

• Define AREX = {<R,w>| R is a regex that generates w}

• (p. 196) Theorem 4.3 AREX is decidable

• Proof: Convert R into an NFA

• Then run TM N

• If N accepts, then accept, else reject

5

• Define EDFA = {<A>| A is a DFA where L(A) = Φ}

• “E” for “empty”

• I.e. the set of all DFAs that accept no strings

• (p. 196) Theorem 4.4 EDFA is decidable

• Proof: Use the BFS algorithm starting on start state of A

• Mark states that are reachable from start state

• If any Final State is marked, reject

• If not, accept

• Again will halt since only finite # of states in any DFA

• Define EQDFA = {<A,B>| A,B both DFAs & L(A) = L(B)}

• “EQ” stands for Equivalent

• I.e. the set of all pairs of DFAs that are equivalent

• (p. 196) Theorem 4.5 EQDFA is decidable

• Proof:

• Construct a new DFA C from A and B that

• Accepts only those strings that are accepted by either

A or B, but not both

• i.e. L(C) = (L(A) ∩ not(L(B))) U (not(L(A)) ∩ L(B))

• Called Symmetric Difference

• If L(C) is empty then A & B gen same language

• Then use machine from Theorem 4.4

6

• (p. 198) Decidable Problems re CFLs

• Define ACFG = {<G,w>|G is a CFG that generates w}

• (p. 198) Theorem 4.7 ACFG is a decidable language

• If G is in Chomsky Normal Form, any derivation of w has

2n-1 steps, where |w|=n

• TM S

• Convert G to Chomsky

• List all derivations with 2n-1 steps

• If any generate w, accept, else reject

• Define ECFG = {<G>|G is a CFG & L(G) = Φ}

• (p. 199) Theorem 4.8 ECFG is a decidable language

• TM R

• Mark all terminal symbols in G

• Repeat until no new variables get marked

• Mark any variable A where G has a rule A->U1U2…Uk

and each symbol Ui has already been marked

• If start variable not marked, accept, else reject

7

• Define EQCFG = {<G,H>|G & H are CFGs, & L(G)=L(H)}

• Cannot use DFA approach because CFLs not closed under

complement or intersection & this is NOT decidable

• (p. 200) Theorem 4.9 Every CFL is decidable

• Don’t want to try converting a PDA into an TM

• Some branches of PDAs computation may go on

forever, so TM can’t be a decider

• Proof: Let G be a CFG for A; TM MG is to decide A

• Run TM S on <G,w>

• If it accepts, then accept, else reject

• Result: p.201 Fig. 4.10. Following are proper subsets of

the next one

• Regular languages

• Context-Free languages

• Decidable Languages

• Turing-recognizable languages

