TMs & Languages (end of Sec. 3.1 & Sec. 4.1)

- (p. 170) TMs and Languages
 - L(M) = set of strings accepted by TM M
 - L is Turing-recognizable if some TM M accepts it
 - When M started, 3 outcomes: Accept, Reject, Loops
 - M can fail to accept if it enters q_{reject} or loops
 - (p. 170) M is a **decider** is it <u>never loops</u>
 - I.E. <u>always stops</u>, regardless of input string
 - I.e. always ends up in either q_{accept} or q_{reject}
 - (p. 170) L is **Turing-decidable** (or simply **decidable**) if some Turing Machine decides it.
- Examples
 - (p. 171 Ex. 3.7) $A = (0^k | k=2^n, n \ge 0)$
 - Multiple iterations, each cuts # 0s in half
 - (p.173 Ex. 3.9) B = {w#w | w in {0,1}*}
 - (p. 174 Ex. 3.11) C = $\{a^i b^j c^k | ixj=k, i,j,k \ge 1\}$
 - (p.175 Ex. 3.12) E = {#x₁#x₂# ...#x₁ | no two x's are equal}

- (p. 194) Acceptance problem: does some DFA accept some string?
 - Can we build a TM that:
 - given a representation for some FA and some string,
 - tell us if that FA accepts the string, or not
 - and do so in finite time
 - and never loop

- Define A_{DFA} = {<B,w>| B is a DFA that accepts w}
 - <B,w> is "encoding" of DFA B and string w in a way that a TM can "interpret" B's processing of w
 - E.g. is a list of B's 5 components
 - A_{DFA} is set of all encoded DFAs & the strings they accept

Is A_{DFA} decidable?

- Does there exist a TM that accepts *all* members of A_{DFA} and rejects all other inputs?
 - I.e. does it always halt
- (p. 194) Theorem 4.1: A_{DFA} is decidable
 - Proof: M = "On input <B,w> where B is a DFA & w a string"
 - M receives a tape with <B,w> on it
 - Determine if representation of is formatted ok
 - Simulate DFA B on string w
 - Keep track of B's current state and position into its input w on M's tape
 - Search for correct transition
 - Update state and index
 - If simulated B ends in accept, accept. If it ends in nonaccept, reject.
 - Note: formatted B always stops after finite # of steps
 - Thus so will TM

- Define A_{NFA} = {<B,w>| B is an NFA that accepts w}
- (p. 195) Theorem 4.2: A_{NFA} is decidable
 - Proof: N = "On input <B,w> where B is NFA & w a string"
 - Convert NFA B into equivalent DFA C
 - Encode C and w on tape as <C,w>
 - Having a multi-tape TM may be useful
 - Run machine M from Theorem 4.1 on <C,w>
 - If M accepts, N accepts, else N rejects
 - Note use of a "subroutine" M
- Define A_{REX} = {<R,w>| R is a regex that generates w}
- (p. 196) Theorem 4.3 A_{REX} is decidable
 - Proof: Convert R into an NFA
 - Then run TM N
 - If N accepts, then accept, else reject

- Define $E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA where } L(A) = \Phi \}$
 - "E" for "empty"
 - I.e. the set of all DFAs that accept no strings
- (p. 196) Theorem 4.4 E_{DFA} is decidable
 - Proof: Use the BFS algorithm starting on start state of A
 - Mark states that are reachable from start state
 - If any Final State is marked, reject
 - If not, accept
 - Again will halt since only finite # of states in any DFA
- Define EQ_{DFA} = {<A,B> | A,B both DFAs & L(A) = L(B)}
 - "EQ" stands for Equivalent
 - I.e. the set of all pairs of DFAs that are equivalent
- (p. 196) Theorem 4.5 EQ_{DFA} is decidable
 - Proof:
 - Construct a new DFA C from A and B that
 - Accepts only those strings that are accepted <u>by either</u> <u>A or B, but not both</u>
 - i.e. $L(C) = (L(A) \cap not(L(B))) \cup (not(L(A)) \cap L(B))$
 - Called Symmetric Difference
 - If L(C) is empty then A & B gen same language
 - Then use machine from Theorem 4.4

- (p. 198) Decidable Problems re CFLs
- Define A_{CFG} = {<G,w>|G is a CFG that generates w}
- (p. 198) Theorem 4.7 A_{CFG} is a decidable language
 - If G is in Chomsky Normal Form, any derivation of w has 2n-1 steps, where |w|=n
 - TM S
 - Convert G to Chomsky
 - List all derivations with 2n-1 steps
 - If any generate w, accept, else reject
- Define $E_{CFG} = \{ \langle G \rangle | G \text{ is a CFG } \& L(G) = \Phi \}$
- (p. 199) Theorem 4.8 E_{CFG} is a decidable language
 - TM R
 - Mark all terminal symbols in G
 - Repeat until no new variables get marked
 - Mark any variable A where G has a rule A->U₁U₂...U_k and each symbol U_i has already been marked
 - If start variable not marked, accept, else reject

- Define **EQ_{CFG}** = {<G,H>|G & H are CFGs, & L(G)=L(H)}
 - Cannot use DFA approach because CFLs not closed under complement or intersection & this is NOT decidable
- (p. 200) Theorem 4.9 Every CFL is decidable
 - Don't want to try converting a PDA into an TM
 - Some branches of PDAs computation may go on forever, so TM can't be a decider
 - Proof: Let G be a CFG for A; TM M_G is to decide A
 - Run TM S on <G,w>
 - If it accepts, then accept, else reject
- Result: p.201 Fig. 4.10. Following are proper subsets of the next one
 - Regular languages
 - Context-Free languages
 - Decidable Languages
 - Turing-recognizable languages