• (p. 170) TMs and Languages
 • \(L(M) = \) set of strings accepted by TM \(M \)
 • \(L \) is **Turing-recognizable** if some TM \(M \) accepts it
 • When \(M \) started, 3 outcomes: Accept, Reject, Loops
 • \(M \) can fail to accept if it enters \(q_{\text{reject}} \) or loops
 • (p. 170) \(M \) is a **decider** is it **never loops**
 • I.E. **always stops**, regardless of input string
 • I.e. always ends up in either \(q_{\text{accept}} \) or \(q_{\text{reject}} \)
 • (p. 170) \(L \) is **Turing-decidable** (or simply **decidable**) if some Turing Machine decides it.
• Examples
 • (p. 171 Ex. 3.7) \(A = \{ 0^k \mid k=2^n, n \geq 0 \} \)
 • Multiple iterations, each cuts \# 0s in half
 • (p.173 Ex. 3.9) \(B = \{ w#w \mid w \in \{0,1\}^* \} \)
 • (p. 174 Ex. 3.11) \(C = \{ a^i b^j c^k \mid ixj=k, i,j,k \geq 1 \} \)
 • (p.175 Ex. 3.12) \(E = \{ #x_1#x_2# \ldots #x_l \mid \text{no two } x\text{'s are equal} \} \)
• (p. 194) **Acceptance problem**: does some DFA accept some string?
 • Can we build a TM that:
 • given a representation for some FA and some string,
 • tell us if that FA accepts the string, or not
 • and do so in finite time
 • and never loop
• Define $A_{DFA} = \{<B,w>| B \text{ is a DFA that accepts } w\}$
 • $<B,w>$ is “encoding” of DFA B and string w in a way that a TM can “interpret” B’s processing of w
 • E.g. $$ is a list of B’s 5 components
 • A_{DFA} is set of all encoded DFAs & the strings they accept

• Is A_{DFA} decidable?
 • Does there exist a TM that accepts all members of A_{DFA} and rejects all other inputs?
 • I.e. does it always halt

• (p. 194) Theorem 4.1: A_{DFA} is decidable
 • Proof: $M = \text{“On input } <B,w> \text{ where } B \text{ is a DFA } \& w \text{ a string”}$
 • M receives a tape with $<B,w>$ on it
 • Determine if representation of $$ is formatted ok
 • Simulate DFA B on string w
 • Keep track of B’s current state and position into its input w on M’s tape
 • Search for correct transition
 • Update state and index
 • If simulated B ends in accept, accept. If it ends in nonaccept, reject.
 • Note: formatted B always stops after finite # of steps
 • Thus so will TM
• Define $A_{NFA} = \{<B,w>| B \text{ is an NFA that accepts } w\}$

• (p. 195) Theorem 4.2: A_{NFA} is decidable
 • Proof: $N = \text{“On input } <B,w> \text{ where } B \text{ is NFA & } w \text{ a string”}$
 • Convert NFA B into equivalent DFA C
 • Encode C and w on tape as $<C,w>$
 • Having a multi-tape TM may be useful
 • Run machine M from Theorem 4.1 on $<C,w>$
 • If M accepts, N accepts, else N rejects
 • Note use of a “subroutine” M

• Define $A_{REX} = \{<R,w>| R \text{ is a regex that generates } w\}$

• (p. 196) Theorem 4.3 A_{REX} is decidable
 • Proof: Convert R into an NFA
 • Then run TM N
 • If N accepts, then accept, else reject
• Define \(E_{DFA} = \{ <A> | A \text{ is a DFA where } L(A) = \emptyset \} \)
 • “E” for “empty”
 • I.e. the set of all DFAs that accept no strings

• (p. 196) Theorem 4.4 \(E_{DFA} \text{ is decidable} \)
 • Proof: Use the BFS algorithm starting on start state of \(A \)
 • Mark states that are reachable from start state
 • If any Final State is marked, reject
 • If not, accept
 • Again will halt since only finite # of states in any DFA

• Define \(EQ_{DFA} = \{ <A,B> | A,B \text{ both DFAs & } L(A) = L(B) \} \)
 • “EQ” stands for Equivalent
 • I.e. the set of all pairs of DFAs that are equivalent

• (p. 196) Theorem 4.5 \(EQ_{DFA} \text{ is decidable} \)
 • Proof:
 • Construct a new DFA \(C \) from \(A \) and \(B \) that
 • Accepts only those strings that are accepted by either \(A \) or \(B \), but not both
 • i.e. \(L(C) = (L(A) \cap \text{not}(L(B))) \cup \text{not}(L(A)) \cap L(B) \)
 • Called \textbf{Symmetric Difference}
 • If \(L(C) \) is empty then \(A \) & \(B \) gen same language
 • Then use machine from Theorem 4.4
• (p. 198) Decidable Problems re CFLs

• Define $A_{CFG} = \{<G, w> | G \text{ is a CFG that generates } w\}$

• (p. 198) Theorem 4.7 A_{CFG} is a decidable language
 • If G is in Chomsky Normal Form, any derivation of w has $2n-1$ steps, where $|w| = n$
 • TM S
 • Convert G to Chomsky
 • List all derivations with $2n-1$ steps
 • If any generate w, accept, else reject

• Define $E_{CFG} = \{<G> | G \text{ is a CFG & } L(G) = \emptyset\}$

• (p. 199) Theorem 4.8 E_{CFG} is a decidable language
 • TM R
 • Mark all terminal symbols in G
 • Repeat until no new variables get marked
 • Mark any variable A where G has a rule $A \rightarrow U_1U_2...U_k$
 and each symbol U_i has already been marked
 • If start variable not marked, accept, else reject
• Define $\text{EQ}_{\text{CFG}} = \{<G,H>| G \text{ & } H \text{ are CFGs, } & L(G)=L(H)\}$

• Cannot use DFA approach because CFLs not closed under complement or intersection & this is NOT decidable

• (p. 200) Theorem 4.9 **Every CFL is decidable**

 • Don’t want to try converting a PDA into an TM
 • Some branches of PDAs computation may go on forever, so TM can’t be a decider

 • Proof: Let G be a CFG for A; TM M_G is to decide A
 • Run TM S on $<G,w>$
 • If it accepts, then accept, else reject

• Result: p.201 Fig. 4.10. Following are proper subsets of the next one
 • Regular languages
 • Context-Free languages
 • Decidable Languages
 • Turing-recognizable languages