Graphs

- (p 186) Graphs G = (V,E)
- set V of vertices, each with a unique name
- Note: book calls vertices as nodes
- set E of edges between vertices, each encoded as tuple of 2 vertices as in (u,v)
- Edges may be directed (from u to v) or undirected
- Undirected edge eqvt to pair of directed edges
- Example of undirected graph

$$
\begin{aligned}
& \langle G\rangle= \\
& (1,2,3,4)((1,2),(2,3),(3,1),(1,4))
\end{aligned}
$$

- Labeled graph: each edge has a "name"
- Weighted graph: each edge has numerical value
- E.g. in graph of $\mathrm{V}=$ cities, weight on (u, v) is distance from u to v

Terminology about Graphs (see P. 12)

- Outdegree of a vertex u : \# of edges leaving it
- i.e. $|\{(u, v)\}|$ for some v
- Indegree of a vertex v : \# of edges entering it
- i.e. $|\{(u, v)\}|$ for some u
- For undirected graph outdegree(u) = indegree(u) = degree(u)
- K-regular: every vertex has degree k (p. 13)
- Subgraph: subsets V^{\prime} and E^{\prime} of V and E where all edges in E^{\prime} are between vertices in V^{\prime}
- Path of length k : from u to v if a set of k edges in G $\left(u_{i}, v_{i}\right), 1 \leq i \leq k$, where $u_{1}=u, v_{i}=u_{i+1}$, and $v_{k}=v$
- Simple path: no vertices are repeated
- Shortest path: between $u \& v$ is simple path of shortest lengthg
- Diameter: longest shortest path between any 2 vertices
- Hamiltonian Path: goes thru every vertex once
- Cycle: a path exists from u back to u
- Connected iff every vertex can be reached from every other vertex by some path
- Strongly connected iff a directed path from each vertex to every other
- Tree: graph with no simple paths: Has root \& leaves
- Vertex Cover of size k : subset of k vertices where every edge touches at least one of them (p. 312)
- K-Clique: subset of k vertices where there is an edge between every pair in it.
- Two graphs G \& H are isomorphic if vertices of one can be reordered so that graphs are identical
- Spanning Tree: subgraph that forms a tree that includes all vertices, but with minimum \# of edges
- Flow Network: directed weighted graph where:
- Each edge can carry a "flow" (a number)
- Each edge has a "capacity" (max possible flow value)
- For each vertex, Σ incoming flow = §outgoing flow
- Except for some source that generates out flow
- And some sink which has no outgoing flow

Graph Data Structures

- Assume $|\mathrm{V}|=\mathrm{N},|\mathrm{E}|=\mathrm{M}$
- Adjacency Matrix: NxN Boolean matrix A where
- $A[u, v]=1$ if (u, v) in E
- $\mathrm{A}[\mathrm{u}, \mathrm{v}]=0$ otherwise
- If graph is weighted, $\mathrm{A}[\mathrm{u}, \mathrm{v}]=$ weight on (u, v)
- CSR (Compressed Sparse Row): 3 vectors
- $A: M$ vector of weights (one per edge)
- JA: M vector of vertex indecies
- IA: N+1 vector of indices into A, JA
- IA $[u]=$ index into $A, J A$ for $1^{\text {st }}$ edge from u
- JA[IA[u]] thru JA[IA[u+1]-1] are the v's for edges (u,v)
- Matching elements in A are weights
- Lots of variations

Spanning Trees \& BFS

- Common problem: starting at some vertex u, find tree that reaches as many vertices as possible
- If all vertices reachable, then a "spanning tree"
- Common algorithm: BFS (Breadth First Search)
- Frontier: set of all vertices that have been reached "for $1^{\text {st }}$ time"
- At start, just u
- Also each vertex can be marked as "touched" or not
- At start only u so marked
- For each vertex in current frontier:
- Follow each outgoing edge
- If other vertex is not touched:
- Mark as touched
- Add to new frontier
- When frontier empty, swap with new frontier and repeat
- Option: when first touched, mark vertex with "level"
- Level = \# of edges from root u
- At end, final level = diameter of reached subgraph
- Clearly polynomial time
- Basis for the GRAPH500 benchmark
- www.graph500.org
- Search graphs with up to trillions of vertices
- Literally thousands of different implementations on different computers, esp. parallel
- Established by an ND quad-domer
- Beamer's Algorithm:
- When frontier too large, instead explore all non-touched
- If any of them have an edge to current touched, mark them as touched
- Can reduce time by 10X

Maximum Flow Problems

- Max flow: given a flow network, find largest flow from source to sink where no edge exceeds its capacity
- Ford-Fulkerson Algorithm
- https://en.wikipedia.org/wiki/Ford\�\�\�Fulkerson algorithm
- Define:
- $c(u, v)=$ capacity of edge (u, v)
- $f(u, v)=$ flow on edge (u, v)
- Residual Network $\mathrm{G}_{\mathrm{f}}\left(\mathrm{V}, \mathrm{E}_{\mathrm{f}}\right)=$ network with capacity
$c_{f}(u, v)=c(u, v)-f(u, v)(" r e s i d u a l ~ f l o w ")$
Output Compute a flow f from s to t of maximum value

1. $\boldsymbol{f}(\boldsymbol{u}, \boldsymbol{v}) \leftarrow \mathbf{0}$ for all edges $(\boldsymbol{u}, \boldsymbol{v})$
2. While there is a path p from s to t in $\boldsymbol{G}_{\boldsymbol{f}}$, such that $\boldsymbol{c}_{\boldsymbol{f}}(\boldsymbol{u}, \boldsymbol{v})>\boldsymbol{0}$ for all edges $(\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{p}$:
3. Find $c_{f}(p)=\min \left\{c_{f}(u, v):(u, v) \in p\right\}$
4. For each edge $(u, v) \in \boldsymbol{p}$
5. $\boldsymbol{f}(\boldsymbol{u}, \boldsymbol{v}) \leftarrow f(\boldsymbol{u}, \boldsymbol{v})+\boldsymbol{c}_{\boldsymbol{f}}(\boldsymbol{p})$ (Send flow along the path)
6. $\boldsymbol{f}(\boldsymbol{v}, \boldsymbol{u}) \leftarrow \boldsymbol{f}(\boldsymbol{v}, \boldsymbol{u})-\boldsymbol{c}_{\boldsymbol{f}}(\boldsymbol{p})$ (The flow might be "returned" later)

■ " \leftarrow " denotes assignment. For instance, "largest $\leftarrow i t e m "$ means that the value of largest changes to the value of item. ■ "return" terminates the algorithm and outputs the following value.

- "Finding paths" can use BFS
- Each new path chosen is called "augmenting path"

Bipartite Graphs

- References:
- https://en.wikipedia.org/wiki/Bipartite graph
- Bipartite Graph:
- 2 disjoint sets of vertices U and V, called "parts"
- Every edge connects vertex from U with one from V
- Matching: subset of edges where no two edges share an endpoint
- Maximal Matching: edge set is largest possible matching
- Perfect Matching: $|\mathrm{U}|=|\mathrm{V}|=\mid$ matching set|
- Examples of Bipartite Graphs:
- Athletes and Teams they played with
- Actors and Movies they acted in
- Trains and Stations
- Social networks
- All graphs that are trees
- Graphs that form single
 cycles with even \# vertices
- Graphs that can be written "on a 2D plane" without edges crossing
- Properties
- No odd cycles
- 2-colorable
- Kőnig's theorem: \# of edges in maximum matching = \# of vertices in a minimum vertex cover
- O(VE) algorithm: Hopcroft-Karp
- https://en.wikipedia.org/wiki/Hopcroft\�\�\�Karp algorithm
- Similar to Ford-Fulkerson

Input: Bipartite graph $G(U \cup V, E)$
Output: Matching $M \subseteq E$
$M \leftarrow \emptyset$
repeat
$\mathcal{P} \leftarrow\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ maximal set of vertex-disjoint shortest
augmenting paths
$M \leftarrow M \oplus\left(P_{1} \cup P_{2} \cup \cdots \cup P_{k}\right)$
until $\mathcal{P}=\emptyset$

- $\mathrm{P}_{\mathrm{k}}=$ augmenting path of length k
- "Free vertex" - does not appear in current matching M
- Iteratively find "augmenting path"
- Use BFS to partition vertices into layers
- Current free vertices from U are the $1^{\text {st }}$ layer
- Pick a free vertex from $1^{\text {st }}$ level
- Use BFS to create a tree
- Alternate edges between not in M and in M
- Stop tree if reach a free vertex u from U
- Ends at level k when ≥ 1 free vertices in V are reached
- Define free vertices v from V into a set F
- Choose some shortest tree and then shortest path
- Called augmenting path (of length k)
- Remove all edges from M that are in the path
- Add in all edges from path that are not in M
- Repeat until no free vertex from U has an augmenting path to a free vertex in V
- Why does this work?
- At each iteration, always adding 1 more edge to M than deleting
- Guaranteed to stop at $\min (|\mathrm{U}|,|V|)$
- Complexity: for each vertex in V may look at each edge in E

