
1

Graphs

• (p 186) Graphs G = (V,E)

• set V of vertices, each with a unique name

• Note: book calls vertices as nodes

• set E of edges between vertices, each encoded as tuple of

2 vertices as in (u,v)

• Edges may be directed (from u to v) or undirected

• Undirected edge eqvt to pair of directed edges

• Example of undirected graph

• Labeled graph: each edge has a “name”

• Weighted graph: each edge has numerical value

• E.g. in graph of V=cities, weight on (u,v) is distance from u

to v

2

Terminology about Graphs (see P. 12)

• Outdegree of a vertex u: # of edges leaving it

• i.e. |{(u, v)}| for some v

• Indegree of a vertex v: # of edges entering it

• i.e. |{(u, v)}| for some u

• For undirected graph outdegree(u) = indegree(u) = degree(u)

• K-regular: every vertex has degree k (p. 13)

• Subgraph: subsets V’ and E’ of V and E where all edges

in E’ are between vertices in V’

• Path of length k: from u to v if a set of k edges in G

(ui,vi), 1≤i≤k, where u1 = u, vi = ui+1, and vk = v

• Simple path: no vertices are repeated

• Shortest path: between u & v is simple path of

shortest lengthg

• Diameter: longest shortest path between any 2

vertices

• Hamiltonian Path: goes thru every vertex once

• Cycle: a path exists from u back to u

3

• Connected iff every vertex can be reached from every

other vertex by some path

• Strongly connected iff a directed path from each

vertex to every other

• Tree: graph with no simple paths: Has root & leaves

• Vertex Cover of size k: subset of k vertices where

every edge touches at least one of them (p. 312)

• K-Clique: subset of k vertices where there is an edge

between every pair in it.

• Two graphs G & H are isomorphic if vertices of one can

be reordered so that graphs are identical

• Spanning Tree: subgraph that forms a tree that

includes all vertices, but with minimum # of edges

• Flow Network: directed weighted graph where:

• Each edge can carry a “flow” (a number)

• Each edge has a “capacity” (max possible flow value)

• For each vertex, ∑ incoming flow = ∑outgoing flow

• Except for some source that generates out flow

• And some sink which has no outgoing flow

4

Graph Data Structures

• Assume |V| = N, |E| = M

• Adjacency Matrix: NxN Boolean matrix A where

• A[u,v] = 1 if (u,v) in E

• A[u,v] = 0 otherwise

• If graph is weighted, A[u,v] = weight on (u,v)

• CSR (Compressed Sparse Row): 3 vectors

• A: M vector of weights (one per edge)

• JA: M vector of vertex indecies

• IA: N+1 vector of indices into A, JA

• IA[u] = index into A, JA for 1st edge from u

• JA[IA[u]] thru JA[IA[u+1]-1] are the v’s for edges (u,v)

• Matching elements in A are weights

• Lots of variations

5

Spanning Trees & BFS

• Common problem: starting at some vertex u, find tree

that reaches as many vertices as possible

• If all vertices reachable, then a “spanning tree”

• Common algorithm: BFS (Breadth First Search)

• Frontier: set of all vertices that have been reached “for 1st

time”

• At start, just u

• Also each vertex can be marked as “touched” or not

• At start only u so marked

• For each vertex in current frontier:

• Follow each outgoing edge

• If other vertex is not touched:

• Mark as touched

• Add to new frontier

• When frontier empty, swap with new frontier and repeat

• Option: when first touched, mark vertex with “level”

• Level = # of edges from root u

• At end, final level = diameter of reached subgraph

• Clearly polynomial time

6

• Basis for the GRAPH500 benchmark

• www.graph500.org

• Search graphs with up to trillions of vertices

• Literally thousands of different implementations on

different computers, esp. parallel

• Established by an ND quad-domer

• Beamer’s Algorithm:

• When frontier too large, instead explore all non-touched

• If any of them have an edge to current touched, mark

them as touched

• Can reduce time by 10X

http://www.graph500.org/

7

Maximum Flow Problems

• Max flow: given a flow network, find largest flow from

source to sink where no edge exceeds its capacity

• Ford-Fulkerson Algorithm

• https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

• Define:

• c(u,v) = capacity of edge (u, v)

• f(u,v) = flow on edge (u,v)

• Residual Network Gf(V,Ef) = network with capacity

cf(u,v) = c(u,v) – f(u,v) (“residual flow”)

• “Finding paths” can use BFS

• Each new path chosen is called “augmenting path”

https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

8

Bipartite Graphs
• References:

• https://en.wikipedia.org/wiki/Bipartite_graph

• Bipartite Graph:

• 2 disjoint sets of vertices U and V, called “parts”

• Every edge connects vertex from U with one from V

• Matching: subset of edges where no two edges share

an endpoint

• Maximal Matching: edge set is largest possible matching

• Perfect Matching: |U|=|V|=|matching set|

• Examples of Bipartite Graphs:

• Athletes and Teams they played with

• Actors and Movies they acted in

• Trains and Stations

• Social networks

• All graphs that are trees

• Graphs that form single

cycles with even # vertices

• Graphs that can be written

“on a 2D plane” without edges crossing

By David Eppstein - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=2180227

https://en.wikipedia.org/wiki/Bipartite_graph

9

• Properties

• No odd cycles

• 2-colorable

• Kőnig's theorem: # of edges in maximum matching = #

of vertices in a minimum vertex cover

• O(VE) algorithm: Hopcroft-Karp

• https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm

• Similar to Ford-Fulkerson

• Pk = augmenting path of length k

• “Free vertex” – does not appear in current matching M

• Iteratively find “augmenting path”

• Use BFS to partition vertices into layers

• Current free vertices from U are the 1st layer

• Pick a free vertex from 1st level

• Use BFS to create a tree

• Alternate edges between not in M and in M

• Stop tree if reach a free vertex u from U

https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm

10

• Ends at level k when ≥1 free vertices in V are reached

• Define free vertices v from V into a set F

• Choose some shortest tree and then shortest path

• Called augmenting path (of length k)

• Remove all edges from M that are in the path

• Add in all edges from path that are not in M

• Repeat until no free vertex from U has an augmenting

path to a free vertex in V

• Why does this work?

• At each iteration, always adding 1 more edge to M than

deleting

• Guaranteed to stop at min(|U|, |V|)

• Complexity: for each vertex in V may look at each edge in E

•

