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Graphs 

• (p 186) Graphs G = (V,E) 

•  set V of vertices, each with a unique name 

• Note: book calls vertices as nodes 

• set E of edges between vertices, each encoded as tuple of 

2 vertices as in (u,v) 

• Edges may be directed (from u to v) or undirected 

• Undirected edge eqvt to pair of directed edges 

• Example of undirected graph 

 

• Labeled graph: each edge has a “name” 

• Weighted graph: each edge has numerical value 

• E.g. in graph of V=cities, weight on (u,v) is distance from u 

to v  
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Terminology about Graphs (see P. 12) 

• Outdegree of a vertex u: # of edges leaving it 

• i.e. |{(u, v)}| for some v 

• Indegree of a vertex v: # of edges entering it  

• i.e. |{(u, v)}| for some u 

• For undirected graph outdegree(u) = indegree(u) = degree(u) 

• K-regular: every vertex has degree k (p. 13) 

• Subgraph: subsets V’ and E’ of V and E where all edges 

in E’ are between vertices in V’ 

• Path of length k: from u to v if a set of k edges in G 

(ui,vi), 1≤i≤k, where u1 = u, vi = ui+1, and vk = v 

• Simple path: no vertices are repeated 

• Shortest path: between u & v is simple path of 

shortest lengthg  

• Diameter: longest shortest path between any 2 

vertices 

• Hamiltonian Path: goes thru every vertex once 

• Cycle: a path exists from u back to u 
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• Connected iff every vertex can be reached from every 

other vertex by some path  

• Strongly connected iff a directed path from each 

vertex to every other 

• Tree: graph with no simple paths: Has root & leaves  

• Vertex Cover of size k:  subset of k vertices where 

every edge touches at least one of them (p. 312) 

• K-Clique: subset of k vertices where there is an edge 

between every pair in it. 

• Two graphs G & H are isomorphic if vertices of one can 

be reordered so that graphs are identical 

• Spanning Tree: subgraph that forms a tree that 

includes all vertices, but with minimum # of edges 

• Flow Network: directed weighted graph where: 

• Each edge can carry a “flow” (a number) 

• Each edge has a “capacity” (max possible flow value) 

• For each vertex, ∑ incoming flow = ∑outgoing flow 

• Except for some source that generates out flow 

• And some sink which has no outgoing flow 
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Graph Data Structures 

• Assume |V| = N, |E| = M 

• Adjacency Matrix: NxN Boolean matrix A where 

• A[u,v] = 1 if (u,v) in E 

• A[u,v] = 0 otherwise 

• If graph is weighted, A[u,v] = weight on (u,v) 

• CSR (Compressed Sparse Row): 3 vectors 

• A: M vector of weights (one per edge) 

• JA: M vector of vertex indecies 

• IA: N+1 vector of indices into A, JA 

• IA[u] = index into A, JA for 1st edge from u 

• JA[IA[u]] thru JA[IA[u+1]-1] are the v’s for edges (u,v) 

• Matching elements in A are weights 

• Lots of variations 
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Spanning Trees & BFS 

• Common problem: starting at some vertex u, find tree 

that reaches as many vertices as possible 

• If all vertices reachable, then a “spanning tree” 

• Common algorithm: BFS (Breadth First Search) 

• Frontier: set of all vertices that have been reached “for 1st 

time” 

• At start, just u 

• Also each vertex can be marked as “touched” or not 

• At start only u so marked 

• For each vertex in current frontier: 

• Follow each outgoing edge 

• If other vertex is not touched: 

• Mark as touched 

• Add to new frontier 

• When frontier empty, swap with new frontier and repeat 

• Option: when first touched, mark vertex with “level” 

• Level = # of edges from root u 

• At end, final level = diameter of reached subgraph 

• Clearly polynomial time 
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• Basis for the GRAPH500 benchmark 

• www.graph500.org 

• Search graphs with up to trillions of vertices 

• Literally thousands of different implementations on 

different computers, esp. parallel 

• Established by an ND quad-domer 

• Beamer’s Algorithm:  

• When frontier too large, instead explore all non-touched 

• If any of them have an edge to current touched, mark 

them as touched 

• Can reduce time by 10X 

  

http://www.graph500.org/
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Maximum Flow Problems 

• Max flow: given a flow network, find largest flow from 

source to sink where no edge exceeds its capacity 

• Ford-Fulkerson Algorithm 

• https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm 

• Define:  

• c(u,v) = capacity of edge (u, v) 

• f(u,v) = flow on edge (u,v) 

• Residual Network Gf(V,Ef) = network with capacity 

cf(u,v) = c(u,v) – f(u,v) (“residual flow”) 

 

• “Finding paths” can use BFS 

• Each new path chosen is called “augmenting path” 

  

https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm
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Bipartite Graphs 
• References:  

• https://en.wikipedia.org/wiki/Bipartite_graph 

• Bipartite Graph: 

• 2 disjoint sets of vertices U and V, called “parts” 

• Every edge connects vertex from U with one from V 

• Matching: subset of edges where no two edges share 

an endpoint 

• Maximal Matching: edge set is largest possible matching 

• Perfect Matching: |U|=|V|=|matching set| 

• Examples of Bipartite Graphs: 

• Athletes and Teams they played with 

• Actors and Movies they acted in  

• Trains and Stations 

• Social networks 

• All graphs that are trees 

• Graphs that form single 

cycles with even # vertices 

• Graphs that can be written 

“on a 2D plane” without edges crossing 

By David Eppstein - Own work, Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=2180227 

https://en.wikipedia.org/wiki/Bipartite_graph
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• Properties 

• No odd cycles 

• 2-colorable 

• Kőnig's theorem: # of edges in maximum matching = # 

of vertices in a minimum vertex cover 

• O(VE) algorithm: Hopcroft-Karp 

• https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm 

• Similar to Ford-Fulkerson 

 

• Pk = augmenting path of length k 

• “Free vertex” – does not appear in current matching M 

• Iteratively find “augmenting path” 

• Use BFS to partition vertices into layers 

• Current free vertices from U are the 1st layer  

• Pick a free vertex from 1st level 

• Use BFS to create a tree 

• Alternate edges between not in M and in M 

• Stop tree if reach a free vertex u from U 

https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm
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• Ends at level k when ≥1 free vertices in V are reached 

• Define free vertices v from V into a set F 

• Choose some shortest tree and then shortest path 

• Called augmenting path (of length k) 

• Remove all edges from M that are in the path 

• Add in all edges from path that are not in M 

• Repeat until no free vertex from U has an augmenting 

path to a free vertex in V 

• Why does this work? 

• At each iteration, always adding 1 more edge to M than 

deleting 

• Guaranteed to stop at min(|U|, |V|) 

• Complexity: for each vertex in V may look at each edge in E 

•  


