
Notre Dame CSE 34151: Theory of Computing: Fall 2017

Introduction

to

Theory of Computing

Peter Kogge

Introduction Slide 1

Notre Dame CSE 34151: Theory of Computing: Fall 2017

From The Dictionary

 Theory: system of ideas intended to explain

something

– Especially based on general principles

independent of thing being explained

 Computing: (from Latin) to come together (to

settle an account)

 Philosophy: study of the fundamental nature

of knowledge, reality, and existence

Introduction Slide 2

This Class: a study of the

fundamental nature and

limits of computation

Notre Dame CSE 34151: Theory of Computing: Fall 2017

The Matching Problem

Introduction Slide 3

Bipartite Matching: a.k.a

2-Gender marriage problem:

Solvable in “polynomial” time

O(V2.4) or O(E10/7)

3-Gender marriage problem:

Known to be “NP-Hard”

Probably exponential: O(2V)

https://www.researchgate.net/profile/Simon_Poon/publication/279225880/figure/fig1/AS:30195

2400412694@1449002470456/Tripartite-graph-structure-of-TCM-Here-instances-of-different-

objects-are-represented.png

It continues to be O(2V) for more than 3 genders

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Does It Matter to a

Match-Making Computer?

Introduction Slide 4

1

1E+18

1E+36

1E+54

1E+72

1E+90

1E+108

1E+126

1E+144

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

N
u

m
b

e
r

o
f

St
e

p
s

Number of Vertices
Polynomial Exponential

Number of atoms in Universe

Problems requiring exponential # of steps are HARD!!

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Another Example:

Boolean Satisfiability (SAT)

 SAT: Is there a assignment of values to

variables in a Boolean expression making it true

 Example: (~x v y) & (x v y) & (x v ~y)

– x=1, y=1 makes expression true

 Example: (~x v y) & (x v y) & (x v ~y) & (~x v ~y)

– No assignment of values make expression true

 Trivial algorithm: create truth table to test all

possible cases (2|V|)

 Can we do better?

Introduction Slide 5

SAT is perhaps THE fundamental problem in computing!

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Key Questions for Such Problems

 What is it that we “count” when discussing

“how hard” a problem is?

 Are there variations in our basic model of

computing?

 What classes of problems are solvable by

each model?

 Why are some problems “hard”

 Is there a “universal problem”?

 Is there a “universal computing model”?

 Are there problems that are intrinsically hard

even on a universal computer?

Introduction Slide 6

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Computing Theory In Perspective

 Architecture: Design of inhabitable structures

 Organization: Functional interaction of Key

Subsystems

 Design: Implementation in a real technology

 Execution Model: How a computer executes a

program

 Algorithm: Step-by-step description of a

computation to solve some problem

 Programming Model: Expression of Algorithm

in form that executes on a real computer

Introduction Slide 7

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Particularly Relevant

 Abstract Machine: simplified model of a class

of computer systems

– Today’s computers are all von Neumann

 Automata Theory: formal definitions of 3 basic

classes of abstract machines

 Complexity Theory: what makes some

problems intrinsically hard and others simple?

 Computability Theory: what problems can be

solved by algorithms executable on what

classes of automata

Introduction Slide 8

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Classes of Automata

 Automata: (Greek for “self-acting”) Device that

– Accepts strings of input data one character at a time

– Generates an output (at some point)

– Fixed set of states it can be in

– Follows a stored set of transition rules

• For each input & current state, what is new state

 Finite Automata: No memory other than state

– Deterministic (DFA): transition rules id at most only 1 new state

– NonDeterministic (NFA): multiple transitions possible

 Push Down Automata (PDA): Stack available of

intermediate results

 Turing Machines (TM): Infinite tape available for

intermediate results

Introduction Slide 9

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Today: Turing Machines Rule!

Introduction Slide 10

http://www.worldofcomputing.net/theory/turing-machine.html

Turing Machine:

1. Read a character from a tape

2. Get operation from table lookup

3. Write a character to tape

4. Move tape left or right

5. Repeat

http://www.teach-

ict.com/as_as_computing/ocr/H447/F453/3_3_3/vonn_neuman/miniw

eb/images/von_newmann_architecture.jpg

Von Neumann Architecture:

1. Read instruction from memory

2. Read a datum from memory

3. Do an operation

4. Determine next instruction

5. Repeat

Notre Dame CSE 34151: Theory of Computing: Fall 2017

More on Language Definitions

 Alphabet: set of characters that can be

used in a program

 Symbol: member of an alphabet

 Syntax: formal rules for valid substrings

Grammar: expression of syntax rules

 Semantics: formal description of what

valid strings mean in terms of algorithm

execution

Introduction Slide 11

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Classes of Languages

 Language Recognition: transition rules can be

generated to

– Say YES for any input string if in that language

– Say NO for any input string not in that language

 Regular Expressions: can be recognized by FA

 Context Free: can be recognized by PDA

 Context Sensitive and Unrestricted: can be

recognized by a Turing Machine

Introduction Slide 12

Notre Dame CSE 34151: Theory of Computing: Fall 2017

A Simple Finite Automata

Introduction Slide 13

http://engin.swarthmore.edu/~dlu

ong1/E15/Lab3/design.htm

State Diagram Representation

Transition Function Representation

δ(current_state, input) = new_state

e.g.

δ(G/R, ewcar) = Y/R

Notre Dame CSE 34151: Theory of Computing: Fall 2017

A “Multi-dimensional” Automata

Conway’s “Game of Life”

Introduction Slide 14

A “live” cell dies if

• Less than 2 live neighbors

• Greater than 3 live neighbors

A dead cell becomes “alive” if

• exactly 3 live neighbors

Rationale for these choices:

• No initial pattern for which there is a simple proof that the population can

grow without limit.

• There should be initial patterns that apparently do grow without limit.

• There should be simple initial patterns that grow and change for a

considerable period of time before coming to an end in the following

possible ways:

Fading away completely (from overcrowding or too sparse)

Settling into a stable or oscillating pattern.

http://www.math.cornell.edu/~lipa/mec/lesson6.html

Notre Dame CSE 34151: Theory of Computing: Fall 2017

 What are valid inputs?

 What is output?

 What is operation?

 What is “language”

that is accepted?

 How much memory is

here?

Introduction Slide 15

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Describe the Calculator’s Operation

If you press The calculator does the following

0,1,2,3,4,5,

6,7,8,9

+,-,*,/

=

Introduction Slide 16

Food for Thought: What happens if you press a digit after “=“?

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Describe the Calculator’s Operation

Notional “Transition Table”

If you press The calculator does the following

0,1,2,3,4,5,

6,7,8,9

Shift Display left and insert digit

+,-,*,/ • Remember the operation

• Remember current displayed #

• Reset display # to 0

= Compute: Remembered # “operation”

Displayed #, and display result

Introduction Slide 17

Food for Thought: What happens if you press a digit after “=“?

Notre Dame CSE 34151: Theory of Computing: Fall 2017

A Subset of a “State Diagram”

Introduction Slide 18

0none5
…
6

…

0none56
*

…

56*0

2

…

56*2
=

…0*112

…

+
112+0

…112+3 3

…

ixj is “state” where “i” is saved #, j is displayed #, and “x” is last operator

Symbol on edge is a button push

“none” represent no operation pushed since power on

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Alternative: Transition Function

 δ is denoted as the Transition Function

 δ(current_state, input) = new_state

 If state represented as “ixj” where

– “i” is last # saved in calculator

– “j” is number currently being displayed

– “x” is last operation button pushed

 Then some sample entries for δ include

– δ(2+3, 5) = 2+35 (push 5 onto right of displayed #)

– δ(2+35, “=“) = 0=70

– Many, many more, but finite # of them

Introduction Slide 19

Notre Dame CSE 34151: Theory of Computing: Fall 2017

What’s the “Abstract Machine?”

Introduction Slide 20

Displayed # Memory #

Keystroke

0

Arithmetic

Unit

0

Control

Signals

Operation Next State Operation Next State Operation Next State

0

1

2

3

4

5

6

7

8

9

+

-

*

/

=

State 1
Keystroke

State 2 … State N

SavedOperation

State = concatenate(Displayed#,memory#,SavedOperation)

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Can We Compute ALL Expressions

 Can we compute 12*34 + 56 / 78 = ?

 Can we compute 12*34 + 45*67 = ?

 What is the computable language?

<digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<number> → <digit> | <number> <digit>

<op> → + | - | * | /

<expression> → <number> |

<expression> <op> <number> =

Introduction Slide 21

This kind of grammar notation is often called “BNF”

Non-terminal

Meta-symbol

Symbol

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Does This Change Anything?

Introduction Slide 22

 What are valid inputs?

 What is output?

 What is “language”

that is accepted?

 How much memory is

here?

Notre Dame CSE 34151: Theory of Computing: Fall 2017

More Food for Thought?

Introduction Slide 23

http://pop.h-

cdn.co/assets/15/23/980x490

/landscape-1433433160-

virus-swineflu.jpg

Virus

https://upload.wikimedia.org/

wikipedia/commons/thumb/5/

58/Cyanobacterium-

inline.svg/2000px-

Cyanobacterium-

inline.svg.png

Cyanobacteria

http://www.schursastrophotography.com/roboimages/

visonlogic/onepixeleye/euglena.gif

Euglena

https://upload.wikimedia.org/wikipedia/co

mmons/thumb/6/6b/Anatomy_of_a_jellyfis

h-en.svg/2000px-Anatomy_of_a_jellyfish-

en.svg.png

Jellyfish

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&u

act=8&ved=0ahUKEwiOhcrfncnOAhVITSYKHSFAAA0QjRwIBw&url=http%3A%2F%2F

earthwormresources.weebly.com%2Freproduction-and-

development.html&psig=AFQjCNGKeHGRIYTCQIh2BSAKXPjAls-

PLQ&ust=1471550174895324

Earthworm Cockroach

http://www.biologydiscussion.com/wp-

content/uploads/2014/09/clip_image002_thumb18.jpg

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd

=&cad=rja&uact=8&ved=0ahUKEwjp2dbFn8nOAhVDMSYKHTY5AuQQjR

wIBw&url=http%3A%2F%2Fscicurious.scientopia.org%2F2013%2F07%2F

19%2Ffriday-wierd-science-mopey-mice-pee-their-

feelings%2F&psig=AFQjCNGvZ6Ld_N19E2vUByxJe6OxL2HkRQ&ust=147

1550607879756

https://images-na.ssl-images-

amazon.com/images/G/01/img15/pet-products/small-

tiles/23695_pets_vertical_store_dogs_small_tile_8._

CB312176604_.jpg

http://i.dailymail.co.uk/i/pix/2011/11/01/article-0-

0C1D461000000578-689_468x482.jpg http://wiinnebago.com/wp-content/uploads/2013/06/HR-People.jpg

Notre Dame CSE 34151: Theory of Computing: Fall 2017

What’s Next?

Introduction Slide 24

http://www.sciencealert.com/images/articles/pr

ocessed/quantum-computer_1024.jpg
https://www.skotcher.com/wall/12ea2fc3e99298fdd4d12a13c69a2c56/2001-a-space-odyssey-hurricane-monolith-planets-starlight.jpg

http://3.bp.blogspot.com/-y4yiZzcyyDk/UgO_gBocm-

I/AAAAAAAAnmA/ISvU3OkdgEo/s1600/synapsestack.png

https://media.licdn.com/mpr/mpr/AAEAAQAAAAAAAAXLAAAAJDI5

N2M1ZmJmLWJiODQtNDFkZC1iZTRmLWY4N2ViNDA1MmE1ZQ.jpg

