
Notre Dame CSE 34151: Theory of Computing: Fall 2017

Introduction

to

Theory of Computing

Peter Kogge

Introduction Slide 1

Notre Dame CSE 34151: Theory of Computing: Fall 2017

From The Dictionary

 Theory: system of ideas intended to explain

something

– Especially based on general principles

independent of thing being explained

 Computing: (from Latin) to come together (to

settle an account)

 Philosophy: study of the fundamental nature

of knowledge, reality, and existence

Introduction Slide 2

This Class: a study of the

fundamental nature and

limits of computation

Notre Dame CSE 34151: Theory of Computing: Fall 2017

The Matching Problem

Introduction Slide 3

Bipartite Matching: a.k.a

2-Gender marriage problem:

Solvable in “polynomial” time

O(V2.4) or O(E10/7)

3-Gender marriage problem:

Known to be “NP-Hard”

Probably exponential: O(2V)

https://www.researchgate.net/profile/Simon_Poon/publication/279225880/figure/fig1/AS:30195

2400412694@1449002470456/Tripartite-graph-structure-of-TCM-Here-instances-of-different-

objects-are-represented.png

It continues to be O(2V) for more than 3 genders

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Does It Matter to a

Match-Making Computer?

Introduction Slide 4

1

1E+18

1E+36

1E+54

1E+72

1E+90

1E+108

1E+126

1E+144

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

N
u

m
b

e
r

o
f

St
e

p
s

Number of Vertices
Polynomial Exponential

Number of atoms in Universe

Problems requiring exponential # of steps are HARD!!

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Another Example:

Boolean Satisfiability (SAT)

 SAT: Is there a assignment of values to

variables in a Boolean expression making it true

 Example: (~x v y) & (x v y) & (x v ~y)

– x=1, y=1 makes expression true

 Example: (~x v y) & (x v y) & (x v ~y) & (~x v ~y)

– No assignment of values make expression true

 Trivial algorithm: create truth table to test all

possible cases (2|V|)

 Can we do better?

Introduction Slide 5

SAT is perhaps THE fundamental problem in computing!

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Key Questions for Such Problems

 What is it that we “count” when discussing

“how hard” a problem is?

 Are there variations in our basic model of

computing?

 What classes of problems are solvable by

each model?

 Why are some problems “hard”

 Is there a “universal problem”?

 Is there a “universal computing model”?

 Are there problems that are intrinsically hard

even on a universal computer?

Introduction Slide 6

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Computing Theory In Perspective

 Architecture: Design of inhabitable structures

 Organization: Functional interaction of Key

Subsystems

 Design: Implementation in a real technology

 Execution Model: How a computer executes a

program

 Algorithm: Step-by-step description of a

computation to solve some problem

 Programming Model: Expression of Algorithm

in form that executes on a real computer

Introduction Slide 7

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Particularly Relevant

 Abstract Machine: simplified model of a class

of computer systems

– Today’s computers are all von Neumann

 Automata Theory: formal definitions of 3 basic

classes of abstract machines

 Complexity Theory: what makes some

problems intrinsically hard and others simple?

 Computability Theory: what problems can be

solved by algorithms executable on what

classes of automata

Introduction Slide 8

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Classes of Automata

 Automata: (Greek for “self-acting”) Device that

– Accepts strings of input data one character at a time

– Generates an output (at some point)

– Fixed set of states it can be in

– Follows a stored set of transition rules

• For each input & current state, what is new state

 Finite Automata: No memory other than state

– Deterministic (DFA): transition rules id at most only 1 new state

– NonDeterministic (NFA): multiple transitions possible

 Push Down Automata (PDA): Stack available of

intermediate results

 Turing Machines (TM): Infinite tape available for

intermediate results

Introduction Slide 9

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Today: Turing Machines Rule!

Introduction Slide 10

http://www.worldofcomputing.net/theory/turing-machine.html

Turing Machine:

1. Read a character from a tape

2. Get operation from table lookup

3. Write a character to tape

4. Move tape left or right

5. Repeat

http://www.teach-

ict.com/as_as_computing/ocr/H447/F453/3_3_3/vonn_neuman/miniw

eb/images/von_newmann_architecture.jpg

Von Neumann Architecture:

1. Read instruction from memory

2. Read a datum from memory

3. Do an operation

4. Determine next instruction

5. Repeat

Notre Dame CSE 34151: Theory of Computing: Fall 2017

More on Language Definitions

 Alphabet: set of characters that can be

used in a program

 Symbol: member of an alphabet

 Syntax: formal rules for valid substrings

Grammar: expression of syntax rules

 Semantics: formal description of what

valid strings mean in terms of algorithm

execution

Introduction Slide 11

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Classes of Languages

 Language Recognition: transition rules can be

generated to

– Say YES for any input string if in that language

– Say NO for any input string not in that language

 Regular Expressions: can be recognized by FA

 Context Free: can be recognized by PDA

 Context Sensitive and Unrestricted: can be

recognized by a Turing Machine

Introduction Slide 12

Notre Dame CSE 34151: Theory of Computing: Fall 2017

A Simple Finite Automata

Introduction Slide 13

http://engin.swarthmore.edu/~dlu

ong1/E15/Lab3/design.htm

State Diagram Representation

Transition Function Representation

δ(current_state, input) = new_state

e.g.

δ(G/R, ewcar) = Y/R

Notre Dame CSE 34151: Theory of Computing: Fall 2017

A “Multi-dimensional” Automata

Conway’s “Game of Life”

Introduction Slide 14

A “live” cell dies if

• Less than 2 live neighbors

• Greater than 3 live neighbors

A dead cell becomes “alive” if

• exactly 3 live neighbors

Rationale for these choices:

• No initial pattern for which there is a simple proof that the population can

grow without limit.

• There should be initial patterns that apparently do grow without limit.

• There should be simple initial patterns that grow and change for a

considerable period of time before coming to an end in the following

possible ways:

Fading away completely (from overcrowding or too sparse)

Settling into a stable or oscillating pattern.

http://www.math.cornell.edu/~lipa/mec/lesson6.html

Notre Dame CSE 34151: Theory of Computing: Fall 2017

 What are valid inputs?

 What is output?

 What is operation?

 What is “language”

that is accepted?

 How much memory is

here?

Introduction Slide 15

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Describe the Calculator’s Operation

If you press The calculator does the following

0,1,2,3,4,5,

6,7,8,9

+,-,*,/

=

Introduction Slide 16

Food for Thought: What happens if you press a digit after “=“?

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Describe the Calculator’s Operation

Notional “Transition Table”

If you press The calculator does the following

0,1,2,3,4,5,

6,7,8,9

Shift Display left and insert digit

+,-,*,/ • Remember the operation

• Remember current displayed #

• Reset display # to 0

= Compute: Remembered # “operation”

Displayed #, and display result

Introduction Slide 17

Food for Thought: What happens if you press a digit after “=“?

Notre Dame CSE 34151: Theory of Computing: Fall 2017

A Subset of a “State Diagram”

Introduction Slide 18

0none5
…
6

…

0none56
*

…

56*0

2

…

56*2
=

…0*112

…

+
112+0

…112+3 3

…

ixj is “state” where “i” is saved #, j is displayed #, and “x” is last operator

Symbol on edge is a button push

“none” represent no operation pushed since power on

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Alternative: Transition Function

 δ is denoted as the Transition Function

 δ(current_state, input) = new_state

 If state represented as “ixj” where

– “i” is last # saved in calculator

– “j” is number currently being displayed

– “x” is last operation button pushed

 Then some sample entries for δ include

– δ(2+3, 5) = 2+35 (push 5 onto right of displayed #)

– δ(2+35, “=“) = 0=70

– Many, many more, but finite # of them

Introduction Slide 19

Notre Dame CSE 34151: Theory of Computing: Fall 2017

What’s the “Abstract Machine?”

Introduction Slide 20

Displayed # Memory #

Keystroke

0

Arithmetic

Unit

0

Control

Signals

Operation Next State Operation Next State Operation Next State

0

1

2

3

4

5

6

7

8

9

+

-

*

/

=

State 1
Keystroke

State 2 … State N

SavedOperation

State = concatenate(Displayed#,memory#,SavedOperation)

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Can We Compute ALL Expressions

 Can we compute 12*34 + 56 / 78 = ?

 Can we compute 12*34 + 45*67 = ?

 What is the computable language?

<digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<number> → <digit> | <number> <digit>

<op> → + | - | * | /

<expression> → <number> |

<expression> <op> <number> =

Introduction Slide 21

This kind of grammar notation is often called “BNF”

Non-terminal

Meta-symbol

Symbol

Notre Dame CSE 34151: Theory of Computing: Fall 2017

Does This Change Anything?

Introduction Slide 22

 What are valid inputs?

 What is output?

 What is “language”

that is accepted?

 How much memory is

here?

Notre Dame CSE 34151: Theory of Computing: Fall 2017

More Food for Thought?

Introduction Slide 23

http://pop.h-

cdn.co/assets/15/23/980x490

/landscape-1433433160-

virus-swineflu.jpg

Virus

https://upload.wikimedia.org/

wikipedia/commons/thumb/5/

58/Cyanobacterium-

inline.svg/2000px-

Cyanobacterium-

inline.svg.png

Cyanobacteria

http://www.schursastrophotography.com/roboimages/

visonlogic/onepixeleye/euglena.gif

Euglena

https://upload.wikimedia.org/wikipedia/co

mmons/thumb/6/6b/Anatomy_of_a_jellyfis

h-en.svg/2000px-Anatomy_of_a_jellyfish-

en.svg.png

Jellyfish

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&u

act=8&ved=0ahUKEwiOhcrfncnOAhVITSYKHSFAAA0QjRwIBw&url=http%3A%2F%2F

earthwormresources.weebly.com%2Freproduction-and-

development.html&psig=AFQjCNGKeHGRIYTCQIh2BSAKXPjAls-

PLQ&ust=1471550174895324

Earthworm Cockroach

http://www.biologydiscussion.com/wp-

content/uploads/2014/09/clip_image002_thumb18.jpg

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd

=&cad=rja&uact=8&ved=0ahUKEwjp2dbFn8nOAhVDMSYKHTY5AuQQjR

wIBw&url=http%3A%2F%2Fscicurious.scientopia.org%2F2013%2F07%2F

19%2Ffriday-wierd-science-mopey-mice-pee-their-

feelings%2F&psig=AFQjCNGvZ6Ld_N19E2vUByxJe6OxL2HkRQ&ust=147

1550607879756

https://images-na.ssl-images-

amazon.com/images/G/01/img15/pet-products/small-

tiles/23695_pets_vertical_store_dogs_small_tile_8._

CB312176604_.jpg

http://i.dailymail.co.uk/i/pix/2011/11/01/article-0-

0C1D461000000578-689_468x482.jpg http://wiinnebago.com/wp-content/uploads/2013/06/HR-People.jpg

Notre Dame CSE 34151: Theory of Computing: Fall 2017

What’s Next?

Introduction Slide 24

http://www.sciencealert.com/images/articles/pr

ocessed/quantum-computer_1024.jpg
https://www.skotcher.com/wall/12ea2fc3e99298fdd4d12a13c69a2c56/2001-a-space-odyssey-hurricane-monolith-planets-starlight.jpg

http://3.bp.blogspot.com/-y4yiZzcyyDk/UgO_gBocm-

I/AAAAAAAAnmA/ISvU3OkdgEo/s1600/synapsestack.png

https://media.licdn.com/mpr/mpr/AAEAAQAAAAAAAAXLAAAAJDI5

N2M1ZmJmLWJiODQtNDFkZC1iZTRmLWY4N2ViNDA1MmE1ZQ.jpg

