Introduction to Theory of Computing

 Peter Kogge
From The Dictionary

\square Theory: system of ideas intended to explain something

- Especially based on general principles independent of thing being explained
\square Computing: (from Latin) to come together (to settle an account)
\square Philosophy: study of the fundamental nature of knowledge, reality, and existence

This Class: a study of the fundamental nature and limits of computation

The Matching Problem

Bipartite Matching: a.k.a 2-Gender marriage problem: Solvable in "polynomial" time $O\left(V^{2.4}\right)$ or $O\left(E^{10 / 7}\right)$

https://www.researchgate.net/profile/Simon_Poon/publication/279225880/figure/fig1/AS:30195 2400412694@1449002470456/Tripartite-graph-structure-of-TCM-Here-instances-of-different bjects-are-represented.png
3-Gender marriage problem: Known to be "NP-Hard"
Probably exponential: $\mathbf{O}\left(2^{\mathrm{v}}\right)$

It continues to be $O\left(2^{v}\right)$ for more than 3 genders

Does It Matter to a Match-Making Computer?

Problems requiring exponential \# of steps are HARD!!

Another Example: Boolean Satisfiability (SAT)

\square SAT: Is there a assignment of values to variables in a Boolean expression making it true
\square Example: ($\sim x$ v y) \& (x v y) \& (x v ~y)
$-x=1, y=1$ makes expression true
\square Example: ($\sim x \operatorname{y}) \&(x \vee y) \&(x \vee \sim y) \&(\sim x v \sim y)$

- No assignment of values make expression true
\square Trivial algorithm: create truth table to test all possible cases (2 $2^{|\mathrm{V}|}$)
\square Can we do better?

SAT is perhaps THE fundamental problem in computing!

Key Questions for Such Problems

\square What is it that we "count" when discussing "how hard" a problem is?
\square Are there variations in our basic model of computing?
\square What classes of problems are solvable by each model?
\square Why are some problems "hard"
\square Is there a "universal problem"?
\square Is there a "universal computing model"?
\square Are there problems that are intrinsically hard even on a universal computer?

Computing Theory In Perspective

\square Architecture: Design of inhabitable structures
\square Organization: Functional interaction of Key Subsystems
\square Design: Implementation in a real technology
\square Execution Model: How a computer executes a program
\square Algorithm: Step-by-step description of a computation to solve some problem
\square Programming Model: Expression of Algorithm in form that executes on a real computer

Particularly Relevant

\square Abstract Machine: simplified model of a class of computer systems

- Today's computers are all von Neumann
\square Automata Theory: formal definitions of 3 basic classes of abstract machines
\square Complexity Theory: what makes some problems intrinsically hard and others simple?
\square Computability Theory: what problems can be solved by algorithms executable on what classes of automata

Classes of Automata

\square Automata: (Greek for "self-acting") Device that

- Accepts strings of input data one character at a time
- Generates an output (at some point)
- Fixed set of states it can be in
- Follows a stored set of transition rules
- For each input \& current state, what is new state
\square Finite Automata: No memory other than state
- Deterministic (DFA): transition rules id at most only 1 new state
- NonDeterministic (NFA): multiple transitions possible
\square Push Down Automata (PDA): Stack available of intermediate results
Turing Machines (TM): Infinite tape available for intermediate results

Today: Turing Machines Rule!

The Von Neumann or Stored Program architecture

http://www.worldofcomputing.net/theory/turing-machine.html

(c) www.teach-ict.com
http://www.teach-
ict.com/as_as_computing/ocr/H447/F453/3_3_3/vonn_neuman/miniw
Von Neunnann Archatecture:

1. Read instruction from memory
2. Read a datum from memory
3. Do an operation
4. Determine next instruction
5. Repeat

More on Language Definitions

\square Alphabet: set of characters that can be used in a program
\square Symbol: member of an alphabet
\square Syntax: formal rules for valid substrings
\square Grammar: expression of syntax rules
\square Semantics: formal description of what valid strings mean in terms of algorithm execution

Classes of Languages

\square Language Recognition: transition rules can be generated to

- Say YES for any input string if in that language
- Say NO for any input string not in that language
\square Regular Expressions: can be recognized by FA
\square Context Free: can be recognized by PDA
\square Context Sensitive and Unrestricted: can be recognized by a Turing Machine

A Simple Finite Automata

State Diagram Representation

Transition Function Representation
$\delta\left(c u r r e n t _s t a t e\right.$, input) $=$ new_state
e.g.
$\delta(G / R$, ewcar $)=Y / R$

A "Multi-dimensional" Automata Conway's "Game of Life"

A "live" cell dies if

- Less than 2 live neighbors
- Greater than 3 live neighbors A dead cell becomes "alive" if - exactly 3 live neighbors
http://www.math.cornell.edu/~lipa/mec/lesson6.html
Rationale for these choices:
- No initial pattern for which there is a simple proof that the population can grow without limit.
- There should be initial patterns that apparently do grow without limit.
- There should be simple initial patterns that grow and change for a considerable period of time before coming to an end in the following possible ways:

Fading away completely (from overcrowding or too sparse) Settling into a stable or oscillating pattern.

What are valid inputs?
 \square What is output?
 \square What is operation?
 \square What is "language" that is accepted?
 \square How much memory is here?

Describe the Calculator's Operation

If you press	The calculator does the following
$0,1,2,3,4,5$,	
$6,7,8,9$	
,,,,$+- /$	
$=$	

Food for Thought: What happens if you press a digit after "="?

Describe the Calculator's Operation

Notional "Transition Table"	
If you press	The calculator does the following
$\begin{aligned} & 0,1,2,3,4,5, \\ & 6,7,8,9 \end{aligned}$	Shift Display left and insert digit
+,-, *,	- Remember the operation - Remember current displayed \# - Reset display \# to 0
=	Compute: Remembered \# "operation" Displayed \#, and display result

Food for Thought: What happens if you press a digit after "="?

A Subset of a "State Diagram"

ixj is "state" where " i " is saved \#, j is displayed \#, and " x " is last operator "none" represent no operation pushed since power on

Symbol on edge is a button push

Alternative: Transition Function

$\square \delta$ is denoted as the Transition Function

- ठ(current_state, input) = new_state
\square If state represented as "ixj" where
- " i " is last \# saved in calculator
- " j " is number currently being displayed
- "x" is last operation button pushed
\square Then some sample entries for δ include
$-\delta(2+3,5)=2+35$ (push 5 onto right of displayed \#)
$-\delta(2+35, "=")=0=70$
- Many, many more, but finite \# of them

What's the "Abstract Machine?"

State = concatenate(Displayed\#,memory\#,SavedOperation) - - - - - נ

Can We Compute ALL Expressions

\square Can we compute $12 * 34+56 / 78=$?
\square Can we compute $12 * 34+45 * 67=$?
\square What is the computable language?
<digit> $\rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9 \longleftarrow$ Symbol <number> \rightarrow <digit> | <number> <digit>
<op> $\rightarrow+\left|-\left.\right|^{*}\right| /$
<expression> \rightarrow <number> Meta-symbol
<expression> <op> <number> =
Non-terminal

This kind of grammar notation is often called "BNF"

Does This Change Anything?

\square What are valid inputs?
\square What is output?
\square What is "language" that is accepted?
\square How much memory is here?

More Food for Thought?

http://pop.hcdn.co/assets/15/23/980x490 /landscape-1433433160-virus-swineflu.jpg

Jellyfish

https://upload.wikimedia.org/wikipedia/co mmons/thumb/6/6b/Anatomy_of_a_jellyfis h-en.svg/2000px-Anatomy_of_a_jellyfish-

Introduction

 feelings $\% 2$ F\&\&psig

https://upload.wikimedia.org/ wikipedia/commons/thumb/5/ 58/Cyanobacterium-inline.svg/2000px-Cyanobacteriuminline.svg.png
Earthworm

PLQ\&uSt=1471550174895324

amazon.com/images $/ \mathrm{G} / 01 / \mathrm{img} 15 /$ pet-products $/ \mathrm{small}$ -amazon.com/images/G/a1/imgrspet-producl_tile_8.
tiles/23695_pets_vertical_store_dogs_small CB312176604_-jpg

Euglenamoroplast

http://www.schursastrophotography.com/roboimages/ visonlogic/onepixeleye/euglena.gif

Cockroach

http://www.biologydiscussion.com/wpcontent/uploads/2014/09/clip_image002_thumb18.jpg

What's Next?

http://www.sciencealert.com/images/articles/pr ocessed/quantum-computer_1024.jpg

