pp. 292-311. *The Class NP-Complete* (Sec. 7.4)

- P = \{L| L \text{ decidable in poly time}\}
- NP = \{L| L \text{ verifiable in poly time}\}
- Certainly all P is in NP
- Unknown if NP is bigger than P
- (p. 299) **NP-Complete** = subset of NP where if any one is solvable in poly time, then all in NP-Complete are
 - No one has found polynomial algorithms for any in it
 - If someone finds such an algorithm for any problem in NP-Complete, then NP moves to P
 - Unknown if NP-complete = NP
- (p 300) **Theorem 7.27** SAT is in P iff P=NP
 - 1st NP complete problem
 - Will prove any NP problem convertible into SAT
 - Needs several intermediate theorems first
(p. 261) Definition: Language A is Turing-Reducible to B, written $A \leq_T B$, if A is decidable relative to B using some function $f: A \to B$

i.e. any w_A from A can be mapped/reduced to a w_B in B such that B’s decision on w_B can be converted into decision on w_A

If B decidable, then so is A.

(p. 300) Definition 7.28: $f: \Sigma^* \to \Sigma^*$ is a polynomial time computable function if

- Some polynomial time TM exists
- which when started with w on tape,
- halts with just $f(w)$ on its tape,
• (Def. 7.29) Language A is **polynomial time reducible to language to B** (Written $A \leq_p B$) if
 • There is some polynomial time computable function f
 • Where w is in A iff $f(w)$ is in B
 • See Fig. 7.30, p.301
 • Thus for every string w in A there is a string $f(w)$ in B
 • And if w not in A, then $f(w)$ not in B
 • If you can write a polynomial time decider for B
 • then using f can write a polynomial time solver for A

• (p. 301) **Theorem 7.3.1.** **If $A \leq_p B$ and B in P, then A in P**
 • Given any w in A
 • Compute $w' = f(w)$ – poly time
 • Run Decider for B and output result – poly time
 • Sum of two poly time functions is still poly
• Two sample problems

• (p. 299) **SAT: The Satisfiability Problem**
 • SAT = \{wff | wff is satisfiable\}
 • Wff = Well-formed-Formula, made up of
 • Boolean Variables (may take on only 0 or 1)
 • Expressions built from AND, OR, NOT

• (p. 302) **CNF**: a wff is in **conjunctive normal form**:
 • The AND of a set of **clauses** (called a **conjunction**)
 • Where each clause is the OR of a set of **literals** called a **disjunction**
 • Where each literal is a variable or its complement

• **3SAT** = \{wff | wff in CNF with exactly 3 literals\}
 • E.g. \((a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \ldots (a_k \lor b_k \lor c_k)\)

• Also: **CLIQUE** =\{<G,k> | G includes a k-clique\}
 • Where a k-clique has k vertices with edges to each other
 • CLIQUE known to be in NP (p. 296)
• (p.302) **3SAT is polynomial time reducible to CLIQUE**

 • Proof: convert wffs to graphs
 • Wff \(C = C_1 \land C_2 \land \ldots \land C_k \) (i.e. \(k \) clauses)
 • \(C_i = a_i \lor b_i \lor c_i \) where \(a_i, b_i, c_i \) all literals
 • \(f \) converts wff \(C \) to string \(<G,k>\)
 • \(G \) has \(k \) groups of 3 vertices (each group from a clause)
 • Each vertex in a triple corresponds to a literal
 • And named to match
 • All vertices in \(G \) have edges to all other vertices except
 • **No edges between vertices in same triple**
 • **No edge between vertices with opposite labels** (i.e. same variable, different signs)
 • See page 303 for example

\[
(w \mid x \mid y) \land \land (\neg x \mid \neg y \mid z) \land \land (\neg z \mid \neg w \mid \neg x)
\]

We'll connect vertices from different clauses if they are consistent.

Consider \(y = \text{false}, x = \text{true}, w = \text{false}, z = \text{true} \)

Is there a clique of size \(m \) where \(m \) is the number of clauses?

http://cs.nmu.edu/~mkowalcz/cs422w09/36/reduction2.jpg
• (p. 303) Wff C is satisfiable iff G has a k-clique
 • =>: If wff has a satisfying assignment, then each clause has at least one literal that is true
 • Choose just one of these in each triple
 • By construction there must be an edge between all selected vertices & thus must be a k-clique
 • <=: If the graph has a k clique
 • Cannot include vertices in same triple (not permitted by construction)
 • Cannot include literals with opposite sides (not permitted by construction)
 • Assign value to variables to make each literal in k-clique true
 • Result is a satisfying assignment
• If CLIQUE is solvable in poly time, so is 3SAT and vv

We'll connect vertices from different clauses if they are consistent.

Consider y=false, x = true, w = false, z = true

Is there a clique of size m where m is the number of clauses?
• (p. 304) **Def 7.34.** *B is NP-complete if both B in NP and every A in NP is polynomial time reducible to B*

• (p. 304) **Theorem 7.35.** *If B is in NP-complete and B in P, then P = NP*
 • Any member can be converted to any other by series of polynomial time f

• (p. 304) **Theorem 7.36.** *If B in NP-complete, and B \leq_p C for some C in NP, then C is also NP-complete*
 • Since B is NP-complete, every language in NP is polynomial time reducible to B,
 • But B is polynomial time reducible to C
 • Can compose the functions, so every language in NP is also polynomial time reducible to C
 • Thus C also in NP-Complete
• (p. 304) **COOK-LEVIN Theorem. SAT is NP-complete!**
 • First show SAT is in NP
 • A nondeterministic TM N can guess an assignment and then verify in polynomial time. Thus in NP
 • Now show any A in NP is polynomial time reducible to SAT
 • n = |w|, w in A
 • N an NTM that decides A in O(n^k) for some k
 • Tape used is thus at most n^k cells in length
 • Construct **tableau** (table) of size n^k x n^k (p. 305)
 • Each row is a configuration (n^k of them)
 • 1^{st} row is starting config of N on w
 • Each configuration at most n^k symbols long (columns – max tape length)
 • For convenience, each config starts & ends with #
 • Each entry in table called a **cell**
 • Let C = Q U Γ U {#} = state set + tape chars
 • Each cell in table contains a symbol from C
 • A state or a symbol
 • Tableau is **accepting** if some row an accepting config
 • Now to show N accepts w is eqvt to question “does an accepting tableau exist?”
• Conversion f from A to SAT: Each cell in tableau has a symbol from C
• Define a set of $2^k \times 2^k \times |C|$ Boolean variables $x_{i,j,s}$
 • i, j between 1 and 2^k
 • s over all symbols in C
 • $x_{i,j,s} = 1$ iff cell[$i,j]$ contains symbol s
• (p. 306) Define a wff made up of AND of 4 sets of clauses
 • Wff_{cell} = clauses ensure 1 variable is true for each i,j
 • Wff_{start} = clause that forces variables with $i=1$ to have initial config of N
 • Wff_{accept} = clauses that guarantees an accepting configuration appears as some row
 • Wff_{move} = clauses that guarantee that a move from the config for row i to row $i+1$ is valid
 • See 6 “windows” on p. 308 for rows I and $i+1$
 • Centered around state symbol in row i
 • This conversion can be done in poly time
• Thus any problem in NP can have its decider (if it exists) converted into a SAT problem in poly time
• Solving the SAT problem finds answer for A
• Sample tableau (for deterministic TM accepting \((aa)^n\))

<table>
<thead>
<tr>
<th>state</th>
<th>tape</th>
<th>new state</th>
<th>new tape</th>
<th>dir</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>a</td>
<td>q1</td>
<td>a</td>
<td>R</td>
</tr>
<tr>
<td>q1</td>
<td>a</td>
<td>q0</td>
<td>a</td>
<td>R</td>
</tr>
<tr>
<td>q0</td>
<td>blank</td>
<td>q2</td>
<td>blank</td>
<td>L</td>
</tr>
</tbody>
</table>

Tableau for \(aa\)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>q0</td>
<td>a</td>
<td>a</td>
<td>bl</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>q1</td>
<td>a</td>
<td>bl</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>a</td>
<td>q0</td>
<td>bl</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>q2</td>
<td>a</td>
<td>bl</td>
<td>#</td>
</tr>
</tbody>
</table>

3 cells = \(4 \times 6 \times 6\) = 144 variables

<table>
<thead>
<tr>
<th>Variable Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
• Remember: showing a problem is NP-Complete
 • Show its in NP (i.e. NTM to create certificate & poly verifier)
 • Show some/any NP-Complete problem polynomially maps to it
 • Not always 3SAT!
• Other NP-Complete problems
 • (p. 310) 3SAT
 • Do logic conversions from any SAT wff to 3 var clauses
 • (p. 311) CLIQUE
 • 3SAT reduces to it via Theorem 7.32 (p. 302)
 • 3 vertices for each clause
 • Labelled with literal name
 • Edges between all vertices, except:
 • Between vertices of a clause
 • Any vertex with any other labelled with the vertex’s literal complement
 • P. 303 addresses match of satisfying solution and k-clique
• (p. 312) **VERTEX-COVER** = \{<G,k>| G a graph with a subset of k vertices that has every edge in G touching at least one of the subset\}

• 3SAT reduces to \((G,k) \ k=m+2l, m=\# \text{ variables, } l=\# \text{ clauses} \)
 • For each variable \(x\) create *pair* of 2 vertices (labelled \(x\) and \(\sim x\)) with an edge between them
 • Each clause maps to a *triangle* labelled with variables
 • With edges to matching vertices from 1st set
 • Total of \(2m + 3l\) vertices

• Assume satisfying assignment, show k-cover:
 • Include \(m\) vertices from pairs that match assignment
 • Covers edges to clause triangles and other of pair
 • Each triangle has at least 1 vertex in assignment, choose other 2 (2l)

• Assume G has a k-cover, show satisfying assignment
 • Cover must have at least one vertex in each pair
 • Otherwise edge between pair not covered
 • Cover must have at least 2 vertices in each triangle
 • Otherwise cannot get edge in triangle covered
 • For \(k=m+2l\), above must be exact
 • \(M\) from pair must be satisfying (p. 313)
• (p. 314) **HAMPATH**: \(<G,s,t>| there is a path from s to t that goes thru all vertices exactly once.\)

• 3SAT of \(n\) variables & \(k\) clauses reduces to HAMPATH.

• For each variable in 3SAT construct *diamond* as Fig. 7.47

 • 3\(k+3\) vertices in center row
 • 2-vertex pair for each clause + 1 border per clause
 • Lefthand vertex for “true” assignment
 • Righthand for “False”

 • Multiple paths from top to bottom
 • Left or right from top to center
 • Optionally across the center, in either direction
 • Left or right to lower vertex

 • Diamonds stacked on top of each other (Fig. 7.49)
 • Vertex s is topmost; vertex t is bottommost

 • Additionally, add separate vertex for each clause in 3SAT
 • \(K\) of them

 • If literal \(x_i\) appears in clause \(c_j\) (p. 316, Fig. 7.51)
 • Add edge from left vertex of \(j^{th}\) pair in center of diamond for \(x_i\) to vertex for \(c_j\)
 • Add edge from \(c_j\) to right vertex of \(j^{th}\) pair

 • If literal \(\neg x_i\) appears in clause \(c_j\), add edges in opposite
- If 3SAT is satisfiable, then Hamiltonian path from s to t
 - Starts at top, go left if x1 is true, right if false (Fig. 7.53)
 - Go across center, then down to top of next diamond
 - Repeat
 - Exception: for each clause cj pick one satisfying literal
 - Follow the breakout from the appropriate center row
 - Result: all vertices touched exactly once
- If HAMPATH exists in graph
 - If “normal”: top-down and thru center, with bypass, then can read out satisfying assignment
 - Fig. 7.54 (p. 318) cannot occur
- (p. 319) UHAMPATH – HAMPATH with undirected edges
• (p. 319) **SUBSET-SUM** \(S = \{(S,t)| S = \{x_1, \ldots\} \) and for some subset \(Q=\{q_1,\ldots\} \) a subset of \(S \), sum of \(y \)'s = \(t \)\)

• 3SAT of \(l \) variables and \(k \) clauses reduces to a Subset-Sum problem with
 • \(2l \) members of \(S = \{y_1,\ldots,y_l,z_1,\ldots,z_l\} \)
 • \(y_i \) and \(z_i \) for variable \(x_i \)
 • \(2k \) members of \(Q = \{g_1,\ldots,g_k,h_1,\ldots,h_k\} \)
 • and \(t=a \) # described below

• Create table of p. 321
 • Each row of \(l+k \) #s:
 • \(l \) columns: 1 for each variable
 • and \(k \) more columns: 1 for each clause
 • Total of \(2l + 2k + 1 \) rows:
 • \(2l \) of them: variable \(x_i \) has 2 rows, labelled \(y_i \) and \(z_i \)
 • For row \(y_i \): all 0's but a 1 in column for \(x_i \) and a 1 in each clause column having \(x_i \) as a literal
 • For row \(z_i \): all 0's but a 1 in column for \(x_i \) and a 1 in each clause column having \(\neg x_i \) as a literal
 • \(2k \) of them: 2 for each clause, labelled \(g_i \) and \(h_i \)
 • Row is all 0s but a single 1 in column for clause \(i \)
 • One row for \(t \): All 1s for variable columns; all 3s for clause columns
• Treat each row as digits of a number
• Assume wff is satisfiable, show subset
 • select Q as follows
 • If xi assigned true, select yi for Q
 • If xi assigned false, select zi for Q
 • Add up the selected rows
 • Exactly 1 for each of 1st l digits
 • Each of last k digits between 1 and 3
 • To make last k digits all 3
 • Select enough gs and hs to add up to 3
• Assume subset exists, show assignment
 • All digits in each # is either 0 or 1
 • Each column in table has at most 5 1’s
 • At most 3 from literals in clause
 • 2 from gs’ and hs’
 • Thus no carries possible
 • Thus for a 1 in each of first l columns, exactly 1 of ys’ and zs’ must be selected
 • This is assignment
Summary: from https://people.eecs.berkeley.edu/~vazirani/algorithms/chap8.pdf

<table>
<thead>
<tr>
<th>Hard problems (NP-complete)</th>
<th>Easy problems (in P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td>2SAT, HORN SAT</td>
</tr>
<tr>
<td>TRAVELING SALESMAN PROBLEM</td>
<td>MINIMUM SPANNING TREE</td>
</tr>
<tr>
<td>LONGEST PATH</td>
<td>SHORTEST PATH</td>
</tr>
<tr>
<td>3D MATCHING</td>
<td>BIPARTITE MATCHING</td>
</tr>
<tr>
<td>KNAPSACK</td>
<td>UNARY KNAPSACK</td>
</tr>
<tr>
<td>INDEPENDENT SET</td>
<td>INDEPENDENT SET on trees</td>
</tr>
<tr>
<td>INTEGER LINEAR PROGRAMMING</td>
<td>LINEAR PROGRAMMING</td>
</tr>
<tr>
<td>RUDRATA PATH</td>
<td>EULER PATH</td>
</tr>
<tr>
<td>BALANCED CUT</td>
<td>MINIMUM CUT</td>
</tr>
</tbody>
</table>

![Algorithm for A](image1)

![Algorithm for B](image2)

Figure 8.7 Reductions between search problems.

All of NP

- SAT
 - 3SAT
 - INDEPENDENT SET
 - VERTEX COVER
 - CLIQUE
 - 3D MATCHING
 - ZOE
 - SUBSET SUM
 - ILP
 - RUDRATA CYCLE
 - TSP
From https://en.wikipedia.org/wiki/NP-completeness