
1

pp. 292-311. The Class NP (Sec. 7.3)

• Issue: many interesting problems seem to have only

“brute force” algorithms of exponential time

• (p. 292) HAMPATH = {(G,s,t)|G is graph with

Hamiltonian path from s to t}

• Hamiltonian Path from s to t goes thru every other vertex

• Easy decider by variant of algorithm for PATH

• Modify PATH to generate all possible paths

• With test after each one to verify if path is Hamiltonian

• Verifier runs in polynomial time

• Keep a list of vertices

• Follow path

• Cross off matching vertex as each step

• At end, if all vertices crossed off, accept; else reject

• But the generator from PATH is exponential!

• No known polynomial HAMPATH algorithm!

• (p. 293) COMPOSITES = {x|x=pq, for p,q>1}

• Verifier is trivial

• No known polynomial generator

• (p. 293) Not all problems have polynomial verifiers

• e.g. not(HAMPATH)

2

• (p. 293) Definition 7.18. A verifier for language A is an

algorithm V, where A = {w|V accepts <w,c> for some

string c}

• For all w in A there is some c where V accepts <w,c>

• c is “extra information” called a certificate or proof

• e.g. for above problems, c is a “guess” of answer

• HAMPATH: a path that is a Hamiltonian

• COMPOSITES: a divisor

• The ones that work are solutions to problem

• Equivalent to stating “a solution exists”

• Time for V expressed as a function of w

• Polynomial Time Verifier for V runs in polynomial time

• Language A is polynomially verifiable if it has a

polynomial time verifier

• p. 294: example of NTM N1 for HAMPATH that works in

“nondeterministic polynomial time”

• Remember time of NTM is time used by longest branch

• Step 1 “generates” a solution (magically) as a series of

vertex #s

• Step 2 ensures no repeats

• Step 3 ensures starts at s and ends at p

• Step 4 is the polynomial verifier that checks edges exist

3

(p. 294) Definition 7.19: NP is class of languages that

have polynomial time verifiers

• NP stands for “Non deterministic Polynomial”

• HAMPATH and COMPOSITES both in class NP

• (p, 294) Theorem 7.20 Language A is in NP iff it is

decided by some polynomial time NTM

• Proof: if A in NP then decided by NTM in polynomial time

• Let V be matching polynomial verifier for A of O(nk)

• Define NTM N as follows: For input w of length n,

• Nondeterministically select string c of length ≤ nk

• c is “solution”

• Run V on <w,c>

• If V accepts, accept, else reject

• Proof: if Poly time NTM N exists, then A is in NP

• V constructed on <w,c> as follows

• Simulate N on input w, treating each symbol of c as

description of NTM choice to make at each step

• If this branch accepts, accept, else reject

• For HAMPATH

• W is <G,s,t>

• c is a path

4

• (p. 293) NTIME(t(n)) = {L|L is language decided by

some O(t(n)) time NTM}

• NP = Uk NTIME(nk) for all k

• (p. 295) CLIQUE = {<G,k>|G undirected graph with k-

clique} in in NP

• k-clique = set of k vertices with edges between each pair

of vertices in set

• (p. 296) Proof by demonstrating polynomial time verifier

• (p. 297) SUBSET-SUM = {<S,t>|S = {x1, …xk} and for

some {y1, …, yl} subset of S and Σyi = t}

• (p. 299) SAT ={<wff>|wff a satisfiable Boolean formula}

• wff is well-formed-formula constructed from

• Boolean variables

• Boolean operations AND, OR, NOT

• Satisfiability: test if there is a substitution of 0s and 1s to

variables that makes the wff true

• Summary:

• P = class that can be decided quickly

• NP = class that can be verified quickly

• Biggest question in CS: Is P = NP, or P a subset of NP?

• Is there a language in NP that is not in P?

