pp. 292-311. **The Class NP** (Sec. 7.3)

- Issue: many interesting problems seem to have only “brute force” algorithms of exponential time

- (p. 292) **HAMPATH = \{(G,s,t) | G is graph with Hamiltonian path from s to t\}**
 - **Hamiltonian Path** from s to t goes thru every other vertex
 - Easy decider by variant of algorithm for PATH
 - Modify PATH to generate all possible paths
 - With test after each one to **verify** if path is Hamiltonian
 - **Verifier** runs in polynomial time
 - Keep a list of vertices
 - Follow path
 - Cross off matching vertex as each step
 - At end, if all vertices crossed off, accept; else reject
 - But the generator from PATH is **exponential**!
 - **No known polynomial HAMPATH algorithm**!

- (p. 293) **COMPOSITES = \{x | x=pq, for p,q>1\}**
 - Verifier is trivial
 - No known polynomial generator

- (p. 293) Not all problems have polynomial verifiers
 - e.g. not(HAMPATH)
Definition 7.18. A verifier for language A is an algorithm V, where \(A = \{ w | V \text{ accepts } <w,c> \text{ for some string } c \} \).

- For all \(w \) in \(A \) there is some \(c \) where \(V \) accepts \(<w,c> \).
- \(c \) is “extra information” called a certificate or proof.
- e.g. for above problems, \(c \) is a “guess” of answer.
 - HAMPATH: a path that is a Hamiltonian.
 - COMPOSITES: a divisor.
- The ones that work are solutions to problem.
- Equivalent to stating “a solution exists.”
- Time for \(V \) expressed as a function of \(w \).
 - **Polynomial Time Verifier** for \(V \) runs in polynomial time.
- Language A is **polynomially verifiable** if it has a polynomial time verifier.

p. 294: example of NTM \(N_1 \) for HAMPATH that works in “nondeterministic polynomial time.”

- Remember time of NTM is time used by longest branch.
- Step 1 “generates” a solution (magically) as a series of vertex #s.
- Step 2 ensures no repeats.
- Step 3 ensures starts at s and ends at p.
- Step 4 is the **polynomial verifier** that checks edges exist.
Definition 7.19: NP is class of languages that have polynomial time verifiers

- NP stands for “Non deterministic Polynomial”
- HAMPATH and COMPOSITES both in class NP

(p, 294) Theorem 7.20 Language A is in NP iff it is decided by some polynomial time NTM

- Proof: if A in NP then decided by NTM in polynomial time
 - Let V be matching polynomial verifier for A of $O(n^k)$
 - Define NTM N as follows: For input w of length n,
 - Nondeterministically select string c of length $\leq n^k$
 - c is “solution”
 - Run V on <w,c>
 - If V accepts, accept, else reject

- Proof: if Poly time NTM N exists, then A is in NP
 - V constructed on <w,c> as follows
 - Simulate N on input w, treating each symbol of c as description of NTM choice to make at each step
 - If this branch accepts, accept, else reject

 For HAMPATH
 - W is <G,s,t>
 - c is a path
• (p. 293) **NTIME(t(n))** = \{L|L is language decided by some \(O(t(n)) \) time NTM\}

• **NP** = \(\bigcup_k \text{NTIME}(n^k) \) for all \(k \)

• (p. 295) **CLIQUE** = \{<G,k>|G undirected graph with k-clique\} in in NP
 - k-clique = set of k vertices with edges between each pair of vertices in set
 - (p. 296) Proof by demonstrating polynomial time verifier

• (p. 297) **SUBSET-SUM** = \{<S,t>|S = \{x_1, ...x_k\} and for some \{y_1, ..., y_l\} subset of S and \(\Sigma y_i = t \}\}

• (p. 299) **SAT** =\{<wff>|wff a satisfiable Boolean formula\}
 - wff is well-formed-formula constructed from
 - Boolean variables
 - Boolean operations AND, OR, NOT
 - **Satisfiability**: test if there is a substitution of 0s and 1s to variables that makes the wff true

• **Summary**:
 - **P** = *class that can be decided quickly*
 - **NP** = *class that can be verified quickly*

• Biggest question in CS: Is P = NP, or P a subset of NP?
 - Is there a language in NP that is not in P?