pp. 285-291. The Class P (Sec. 7.2)

- (p. 286) Definition: Class $P=$ class of all languages decidable by 1-tape TM in polynomial time
- $P=$ union of all TIME(n^{k}) problems for all k
- Key: if some fancy TM has polynomial time algorithm for some problem, then so does a simple 1-tape TM
- Key: close match to problems solvable on real computers
- Approach to analyzing algorithms for membership in P
- See if polynomial upper bound on number of stages
- See if each stage solvable by polynomial time TM
- All the following are in P
- (p. 287) PATH $=\{<\mathrm{G}, \mathrm{s}, \mathrm{t}\rangle \mid \mathrm{G}$ is directed graph (V, E), with path from s to $t\}$
- $O(N)$: Place mark on vertex s
- O(|V||E|): Repeat until no more marked
- If edge (a, b) leads from marked a to unmarked b, then mark b (at most $|E|$ times per vertex)
- $\mathrm{O}(|\mathrm{V}|)$: If t is marked, accept, else reject
- At most $|\mathrm{V}|+2$ stages, totaling $\mathrm{O}(|\mathrm{V}||\mathrm{E}|)$ steps
- (p. 289) RELPRIME $=\{\langle x, y\rangle \mid x, y$ relatively prime $\}$
- (p. 323) Other languages in P: Ex. 7.8-11, 7.13, 7.14, 7.17
(p. 290) Theorem 7.16. Every CFL has a decider in P
- i.e. if L expressible by a CFG, then there exists polynomial time decider
- Leads to (p. 322, Ex. 7.4) closure of P under union, concatenation, and complement
- And Ex. 7.15 P closed under star
- Consider following as first notional proof of Theorem:
- $L=\{w \mid w$ in a CFL from some CFG G $\}$
- Express G in Chomsky Normal Form (p. 109)
- All rules of form A->BC or A->t
- If w in $L,|w|=n$, any derivation has at most $2 n-1$ steps
- Notionally, for particular w, decider for L tries all derivations with $2 \mathrm{n}-1$ steps
- But this is potentially exponential not polynomial
- Better algorithm uses dynamic programming:
- Given a string w, record solution to smaller problems in $n x n$ table ($n=|w|$) so don't need some terms to be recomputed over and over

- Cell($(\mathrm{i}, \mathrm{j})=$ set of variables that generate $\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1} \ldots \mathrm{w}_{\mathrm{j}}$
- Fill in for string lengths in order $1,2, \ldots$
- For length 1, look at A->b rules \& record A in cell
- Use entries for shorter strings in longer ones
- To generate substring of length $\mathrm{k}-\mathrm{i}+1$, split $\mathrm{w}_{\mathrm{i}} . . . \mathrm{w}_{\mathrm{k}+1}$ into 2 pieces in k different ways:

$$
\begin{aligned}
& \text { - }\left(w_{i}, w_{i+1} \ldots w_{k+1}\right),\left(w_{i} w_{i+1}, w_{i+2} \ldots w_{k+1}\right),\left(w_{i} \ldots w_{i+2},\right. \\
& \left.w_{i+3} \ldots w_{k+1}\right), \ldots\left(w_{i} \ldots w_{k}, w_{k+1}\right)
\end{aligned}
$$

- For each split, examine each rule $A->B C$ to see if B is generator for $1^{\text {st }}$ part, \& C a generator for $2^{\text {nd }}$ part
- If both, add A to Table(i,j)
- If S is in Table(1,n) then accept, else reject
- See page 291 for algorithm
- Algorithm executes in $O\left(n^{3}\right)$ time!
- Try Problem 7.4 on p. 322

w=baba		j: end of sub string				
		1	2	3	4	S->RT
$\stackrel{\sim}{3}$	1					R->TR\|a
$\stackrel{4}{0}$	2					T->TR\|b
$\stackrel{5}{7}$	3					
	4					

