
1

pp. 285-291. The Class P (Sec. 7.2)

• (p. 286) Definition: Class P = class of all languages

decidable by 1-tape TM in polynomial time

• P = union of all TIME(nk) problems for all k

• Key: if some fancy TM has polynomial time algorithm for

some problem, then so does a simple 1-tape TM

• Key: close match to problems solvable on real computers

• Approach to analyzing algorithms for membership in P

• See if polynomial upper bound on number of stages

• See if each stage solvable by polynomial time TM

• All the following are in P

• (p. 287) PATH = {<G,s,t>| G is directed graph (V,E), with

path from s to t}

• O(N): Place mark on vertex s

• O(|V||E|): Repeat until no more marked

• If edge (a,b) leads from marked a to unmarked b,

then mark b (at most |E| times per vertex)

• O(|V|): If t is marked, accept, else reject

• At most |V|+2 stages, totaling O(|V||E|) steps

• (p. 289) RELPRIME = {<x,y>|x,y relatively prime}

• (p. 323) Other languages in P: Ex. 7.8-11, 7.13, 7.14, 7.17

2

(p. 290) Theorem 7.16. Every CFL has a decider in P

• i.e. if L expressible by a CFG, then there exists polynomial

time decider

• Leads to (p. 322, Ex. 7.4) closure of P under union,

concatenation, and complement

• And Ex. 7.15 P closed under star

• Consider following as first notional proof of Theorem:

• L = {w|w in a CFL from some CFG G}

• Express G in Chomsky Normal Form (p. 109)

• All rules of form A->BC or A->t

• If w in L, |w|=n, any derivation has at most 2n-1 steps

• Notionally, for particular w, decider for L tries all

derivations with 2n-1 steps

• But this is potentially exponential not polynomial

3

• Better algorithm uses dynamic programming:

• Given a string w, record solution to smaller problems in

nxn table (n=|w|) so don’t need some terms to be

recomputed over and over

• Cell(i,j) = set of variables that generate wiwi+1…wj

• Fill in for string lengths in order 1, 2, …

• For length 1, look at A->b rules & record A in cell

• Use entries for shorter strings in longer ones

• To generate substring of length k-i+1, split wi…wk+1

into 2 pieces in k different ways:

• (wi, wi+1…wk+1), (wiwi+1, wi+2…wk+1), (wi…wi+2,

wi+3…wk+1), … (wi…wk, wk+1)

• For each split, examine each rule A->BC to see if B

is generator for 1st part, & C a generator for 2nd part

• If both, add A to Table(i,j)

• If S is in Table(1,n) then accept, else reject

1 2 … i-1 i i+1 … j j+1 … n-1 n

1

2

…

i-1

i (I,j)

i+1

…

j

j+1

…

n-1

n

Length n substring

j: end of sub string

i:
St

ar
t

o
f

su
b

-s
tr

in
g

Length 1 substrrings

Length 2 Substrings

Length 3 Substrings

…

4

• See page 291 for algorithm

• Algorithm executes in O(n3) time!

• Try Problem 7.4 on p. 322

w=baba

1 2 3 4 S->RT

1 R->TR|a

2 T->TR|b

3

4

j: end of sub string

i:
St

ar
t

o
f

su
b

-s
tr

in
g

