pp. 285-291. The Class P (Sec. 7.2)

- (p. 286) Definition: Class P = class of all languages
 decidable by 1-tape TM in polynomial time
 - P = union of all TIME(n^k) problems for all k
 - Key: if some fancy TM has polynomial time algorithm for some problem, then so does a simple 1-tape TM
 - Key: close match to problems solvable on real computers
- Approach to analyzing algorithms for membership in P
 - See if polynomial upper bound on number of stages
 - See if each stage solvable by polynomial time TM
- All the following are in P
 - (p. 287) PATH = {<G,s,t>| G is directed graph (V,E), with path from s to t}
 - O(N): Place mark on vertex s
 - O(|V||E|): Repeat until no more marked
 - If edge (a,b) leads from marked a to unmarked b, then mark b (at most |E| times per vertex)
 - O(|V|): If t is marked, accept, else reject
 - At most |V|+2 stages, totaling O(|V||E|) steps
 - (p. 289) RELPRIME = {<x,y>|x,y relatively prime}
 - (p. 323) Other languages in P: Ex. 7.8-11, 7.13, 7.14, 7.17

(p. 290) Theorem 7.16. Every CFL has a decider in P

- i.e. if L expressible by a CFG, then there exists polynomial time decider
- Leads to (p. 322, Ex. 7.4) closure of P under union, concatenation, and complement
 - And Ex. 7.15 P closed under star
- Consider following as first notional proof of Theorem:
 - L = {w | w in a CFL from some CFG G}
 - Express G in Chomsky Normal Form (p. 109)
 - All rules of form A->BC or A->t
 - If w in L, |w|=n, any derivation has at most 2n-1 steps
 - Notionally, for particular w, decider for L tries all derivations with 2n-1 steps
 - But this is potentially exponential not polynomial

- Better algorithm uses **dynamic programming**:
 - Given a string w, record solution to smaller problems in nxn table (n=|w|) so don't need some terms to be recomputed over and over

- Cell(i,j) = set of variables that generate w_iw_{i+1}...w_j
 - Fill in for string lengths in order 1, 2, ...
 - For length 1, look at A->b rules & record A in cell
 - Use entries for shorter strings in longer ones
 - To generate substring of length k-i+1, split w_i...w_{k+1}
 into 2 pieces in k different ways:
 - (w_i, w_{i+1}...w_{k+1}), (w_iw_{i+1}, w_{i+2}...w_{k+1}), (w_i...w_{i+2}, w_{i+3}...w_{k+1}), ... (w_i...w_k, w_{k+1})
 - For each split, examine each rule A->BC to see if B is generator for 1st part, & C a generator for 2nd part
 - If both, add A to Table(i,j)
- If S is in Table(1,n) then accept, else reject

- See page 291 for algorithm
- Algorithm executes in O(n³) time!
- Try Problem 7.4 on p. 322

w=baba		j: end of sub string				
		1	2	3	4	S->RT
i: Start of suk	1					R->TR a
	2					T->TR b
	3					
	4					