(pp. 111-125) **Push Down Automata** (Sec. 2.2)

- **Push Down Automata (PDA)** = DFA + Stack
 - Capable of recognizing CFLs
- Difference from NFA: at each transition
 - Can read (pop) current top value on stack in δ arguments
 - Each δ rule specifies not just new state but optional value to push onto a stack
- Stack depth may become infinite – allows recognizing languages with arbitrary components
 - Notional execution for $\{0^n1^n\}$ – non-regular language
 - At start, for each 0 input, push a 0 to stack
 - At first 1, for each 1 input, pop a 0 off stack
 - If stack & input run out at same time, accept
 - Else reject
- See Fig. 2.12 on p. 110
• **Formal Definition:** PDA $M = 6$ tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$

 • Same kind of nondeterminism as in NFA
 • Q, Σ, q_0, F as before
 • Γ (“gamma”) is **stack alphabet:** symbols that may be on stack
 • Need not have any relation to Σ

 • $\delta: Q \times \Sigma \epsilon \times \Gamma \epsilon \to P(Q \times \Gamma \epsilon)$
 • $\Sigma \epsilon = \Sigma \cup \epsilon$
 • $\Gamma \epsilon = \Gamma \cup \epsilon$

 • A rule $\delta(q, x, s)$ is applicable only if
 • Machine is in state q
 • x from Σ matches next character on input
 • If $x = \epsilon$, then we don’t need a character on input
 • Like ϵ rules in NFA
 • s from Γ matches the current top of the stack
 • If $s = \epsilon$, then we don’t look at stack top
 • If a rule has a non-ϵ s and is chosen:
 • s is “popped” off stack before rhs is performed

 • Range of a δ rule is a (state, z) where z in $\Gamma \epsilon$
 • If z in Γ, push z onto stack
 • If $z = \epsilon$, leave stack unchanged.
• Computation of PDA M
 • Assume
 • Input string \(w \) can be written as \(w = w_1, \ldots, w_m \), each character \(w_i \) either in \(\Sigma \) or an \(\varepsilon \)
 • I.e. whatever input is, we can assume \(\varepsilon \)s can be assumed present between any 2 characters
 • Sequence of states \(r_0, r_1, \ldots, r_m \) (i.e. \(|w|+1 \) states)
 • Sequence of stack \textit{strings} \(s_0, s_1, \ldots, s_m \)
 • Each string is the stack at some time
 • Where leftmost symbol of each string is the “top”
 • A valid \textit{computation} is when
 • \(r_0 = q_0 \) and \(r_m \) is in \(F \)
 • \(s_0 = \varepsilon \) (stack is initially empty)
 • For \(i = 0 \) to \(m-1 \)
 • \((r_{i+1}, b)\) is in \(\delta(r_i, w_i, a) \) where
 • \(s_i = at \), \(a \) in \(\Gamma_\epsilon \), \(t \) in \(\Gamma^* \) (i.e. \(a \) is top, \(t \) rest of stack)
 • If \(a \neq \varepsilon \), we \textit{pop} it off of stack before update
 • \(s_{i+1} = bt \), \(a \) in \(\Gamma_\epsilon \), \(t \) stack after above step
 • If \(b \neq \varepsilon \), we \textit{push} it onto stack
• State diagrams similar to NFA but labels augmented
 • Instead of “a”, write “a,b->c” where
 • a in Σ_ϵ is character on input that causes transition
 • a = ϵ says ignore input
 • b in Γ_ϵ must likewise match stack top
 • b = ϵ says ignore stack top
 • b \neq ϵ says we must match, AND pop after transition
 • **Shorthand** “a->c” for “a,ϵ -> c”
 • c in Γ_ϵ give stack top after transition
 • c = ϵ implies push nothing
 • c \neq ϵ implies push c
 • **Shorthand** “a,b” for “a,b-ϵ”
 • Summary of stack changes for a,b-ϵ. Assume $s_i = xt$

<table>
<thead>
<tr>
<th>b (match for stack)</th>
<th>c (new stack top)</th>
<th>New stack s_{i+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>b = ϵ</td>
<td>c = ϵ</td>
<td>NOP: $s_{i+1} = s_i = xt$</td>
</tr>
<tr>
<td>b = ϵ</td>
<td>c \neq ϵ</td>
<td>Push: $s_{i+1} = cxt$</td>
</tr>
<tr>
<td>b \neq ϵ i.e. x=b, $s_i=bt$</td>
<td>c = ϵ</td>
<td>Pop: $s_{i+1} = t$</td>
</tr>
<tr>
<td>b \neq ϵ i.e. x=b, $s_i=bt$</td>
<td>c \neq ϵ</td>
<td>Change: $s_{i+1} = ct$</td>
</tr>
</tbody>
</table>

• See pages 112-116 for examples