(pp. 111-125) Push Down Automata (Sec. 2.2)

e Push Down Automata (PDA) = DFA + Stack
e Capable of recognizing CFLs
e Difference from NFA: at each transition

e Can read (& pop) current top value on stack in 6
arguments

e Each 6 rule specifies not just new state but optional value
to push onto a stack

e Stack depth may become infinite — allows recognizing
languages with arbitrary components
e Notional execution for {0"1"} —non-regular language
e At start, for each O input, push a O to stack
e At first 1, for each 1 input, pop a O off stack
e If stack & input run out at same time, accept
e Else reject
e See Fig. 2.12 on p. 110

e Formal Definition: PDA M =6 tuple (Q, 2, T, 6, qo, F)
e Same kind of nondeterminism as in NFA
e Q, 2, qo, F as before
e I (“gamma”) is stack alphabet: symbols that may be on
stack
e Need not have any relation to >
e 0: QX2 xle->P(QxT)
e 2.=2Uce
o [.=lUce
e Arule 8(q, x, s) is applicable only if
e Machine is in state g
e x from Z matches next character on input
e If x = ¢, then we don’t need a character on input
e Like € rulesin NFA
e s from [matches the current top of the stack
e If s=¢, then we don’t look at stack top
e If arule has a non-€ s and is chosen:
e sis “popped” off stack before rhs is performed
e Range of a 6 rule is a (state, z) where z in ¢
e Ifzin T, push z onto stack
e If z=¢, leave stack unchanged.

e Computation of PDA M
e Assume
e Input string w can be written as w = wy, ...wn, each
character w; eitherinZ oran e
e |.e. whatever input is, we can assume €s can be
assumed present between any 2 characters
e Sequence of states rg, ry, ...rm (i.e. |w|+1 states)
e Sequence of stack strings so, S1, ...5m
e Each string is the stack at some time
e Where leftmost symbol of each string is the “top”
e A valid computation is when
® ro=qoandrnisinF
e 5o =€ (stack is initially empty)
e Fori=0tom-1
e (ris1, b)isin &6(ri, wj, @) where
e s;=at,ainl, tinl* (i.e. ais top, t rest of stack)
e If a l=¢, we pop it off of stack before update
e si.1 = bt, ain [, t stack after above step
e If b I=¢, we push it onto stack

e State diagrams similar to NFA but labels augmented

e |nstead of “a”, write “a,b->c” where

® ain . is character on input that causes transition

® a = ¢ says ignore input

e bin Tl must likewise match stack top

e b =€ says ignore stack top

e b =€ says we must match, AND pop after transition

e Shorthand “a->c” for “a,e -> ¢”

e cin I, give stack top after transition

e c = € implies push nothing

e c !I=¢€gimplies push c
e Shorthand “a,b” for “a,b->¢”

e Summary of stack changes for a,b->c. Assume s; = xt

b (match for stack)

¢ (new stack top)

New stack si:1

b=¢ cC=¢€ NOP: s;11 = 5; = xt
b=¢ cl=¢ Push: si;1 = cxt
b I=¢€i.e. x=b, si=bt C=¢€ Pop: si.1 =t
b I=¢€i.e. x=b, si=bt cl=¢ Change: si;; = ct

e See pages 112-116 for examples

