
1

(pp. 111-125) Push Down Automata (Sec. 2.2)

• Push Down Automata (PDA) = DFA + Stack

• Capable of recognizing CFLs

• Difference from NFA: at each transition

• Can read (& pop) current top value on stack in δ

arguments

• Each δ rule specifies not just new state but optional value

to push onto a stack

• Stack depth may become infinite – allows recognizing

languages with arbitrary components

• Notional execution for {0n1n} –non-regular language

• At start, for each 0 input, push a 0 to stack

• At first 1, for each 1 input, pop a 0 off stack

• If stack & input run out at same time, accept

• Else reject

• See Fig. 2.12 on p. 110

2

• Formal Definition: PDA M = 6 tuple (Q, Σ, Γ, δ, q0, F)

• Same kind of nondeterminism as in NFA

• Q, Σ, q0, F as before

• Γ (“gamma”) is stack alphabet: symbols that may be on

stack

• Need not have any relation to ∑

• δ: Q x Σε x Γε -> P(Q x Γε)

• Σε = Σ U ε

• Γε = Γ U ε

• A rule δ(q, x, s) is applicable only if

• Machine is in state q

• x from Σ matches next character on input

• If x = ε, then we don’t need a character on input

• Like ε rules in NFA

• s from Γ matches the current top of the stack

• If s = ε, then we don’t look at stack top

• If a rule has a non-ε s and is chosen:

• s is “popped” off stack before rhs is performed

• Range of a δ rule is a (state, z) where z in Γε

• If z in Γ, push z onto stack

• If z=ε, leave stack unchanged.

3

• Computation of PDA M

• Assume

• Input string w can be written as w = w1, …wm, each

character wi either in Σ or an ε

• I.e. whatever input is, we can assume εs can be

assumed present between any 2 characters

• Sequence of states r0, r1, …rm (i.e. |w|+1 states)

• Sequence of stack strings s0, s1, …sm

• Each string is the stack at some time

• Where leftmost symbol of each string is the “top”

• A valid computation is when

• r0 = q0 and rm is in F

• s0 = ε (stack is initially empty)

• For i = 0 to m-1

• (ri+1, b) is in δ(ri, wi, a) where

• si = at, a in Γε, t in Γ* (i.e. a is top, t rest of stack)

• If a != ε, we pop it off of stack before update

• si+1 = bt, a in Γε, t stack after above step

• If b != ε, we push it onto stack

4

• State diagrams similar to NFA but labels augmented

• Instead of “a”, write “a,b->c” where

• a in Σε is character on input that causes transition

• a = ε says ignore input

• b in Γε must likewise match stack top

• b = ε says ignore stack top

• b != ε says we must match, AND pop after transition

• Shorthand “a->c” for “a,ε -> c”

• c in Γε give stack top after transition

• c = ε implies push nothing

• c != ε implies push c

• Shorthand “a,b” for “a,b->ε”

• Summary of stack changes for a,b->c. Assume si = xt

b (match for stack) c (new stack top) New stack si+1
b = ε c = ε NOP: si+1 = si = xt
b = ε c != ε Push: si+1 = cxt

b != ε i.e. x=b, si=bt c = ε Pop: si+1 = t
b != ε i.e. x=b, si=bt c != ε Change: si+1 = ct

• See pages 112-116 for examples

