pp. 215-227. Undecidable Language Problems (Sec. 5.1)

- Remember $A_{T M}=\{<M, w>\mid M$ accepts $w\}$ is undecidable
- When M does not accept w cannot decide if it is because it will eventually reject or loop
- Reduction: converting one problem A into another problem B, where we can use solver for B to solve A

- Also A clearly cannot be "harder" than B, so if B is "decidable" then so is A.
- Standard reduction:
- Assume language L of interest decidable by TM R
- Show that solving L means we can solve $A_{T M}$
- By mapping any instance of $A_{T M}$ into L
- Thus if R exists, then we can construct a TM S so that $\mathrm{A}_{\text {тм }}$ is decidable
- But this is impossible, so no such R can exist
- $\operatorname{HALT}_{T M}=\{<M, w>\mid M$ is a TM that halts on $\mathbf{w}\}$
- (p. 216) Theorem 5.1. HALT тм $^{\text {is undecidable }}$
- Proof by contradiction. Assume $\mathrm{HALT}_{\text {тм }}$ is decidable by R
- Build a decider for ATm
- Given <M,w> instance from $A_{\text {тм }}$, pass unchanged to R
- If R finds M halts on w, R halts and accepts
- If R finds M doesn't halt on w, R halts and rejects

- Construct TM S to decide $A_{T M}$ from R as follows
- Run R on <M,w>
- If R rejects, reject (we know M loops on w)
- If R accepts (we know M halts on w):
- Simulate M on w until it halts
- If M accepts w then S accepts
- If M rejects w, then S rejects
- If R exists, then S as constructed above decides $A_{\text {тм }}$
- But $A_{T M}$ is undecidable, so R cannot exist
- $\mathrm{E}_{\text {тM }}=\{<\mathrm{M}>\mid \mathrm{M}$ is a TM and $\mathrm{L}(\mathrm{M})=\Phi\}$
- (p. 217) Theorem $5.2 \mathrm{E}_{\text {тM }}$ is undecidable
- Assume R decides $E_{T M}$, i.e. given $<M>$ as input, R
- accepts if $L(M)$ is empty
- rejects if $L(M)$ is not

- Use R to construct an S that decides $A_{т м}$ as follows
- Given any <M,w>, first convert M to $\underline{\mathbf{M}}_{\mathbf{1}}$ as follows
- On any input x, If $x!=w, M_{1}$ rejects
- If $x=w$, run M on w and accept if M does
- Only string M_{1} can possibly accept is w
- Now define S on an input <M,w> as follows
- Construct M_{1} from M
- Run R on $<M_{1}>$ (We are assuming R exists)
- If R accepts (i.e. $L(M)=\Phi$), S rejects (w not in $L(M)$)
- else if R rejects ($L\left(M_{1}\right.$) not empty), S accepts
- w accepted by M
- If R were decider for $E_{T M}$, then S is a decider for $A_{T M}$
- (p. 218) REGULAR TM $=\{<M>\mid M$ a TM $\& L(M)$ is regular $\}$
- Theorem 5.3 REGULAR тм is undecidable
- Assume REGULAR TM is decidable by some TM R
- Given some M, R accepts if $L(M)$ is regular
- R rejects if $L(M)$ is NOT regular
- Construct S from R as decider for $\left.A_{T M}=\{<M, w\rangle\right\}$ as follows
- Take M from its input <M,w> and modify M to M_{2} that
- recognizes non-regular language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ if M does not accept w
- recognizes regular language Σ^{*} if M accepts w
- M_{2} constructed ONLY for purpose of feeding its description into assumed decider R for REGULAR $_{\text {TM }}$
- Run R on $\left\langle\mathrm{M}_{2}>\right.$
- If R accepts, then $<\mathrm{M}_{2}>$ recognizes a regular language
- Which means M accepts w
- If R rejects, then M_{2} recognizes a non-reg language
- Which means that M does not accept w
- Which makes R a decider for $\mathrm{A}_{\text {TM }}$
- (p. 219 \& Prob. 5.28) Rice's Theorem:
- Let P be any property of the language of a TM
- $L_{p}=\{<M>\mid M$ a TM such that $L(M)$ has property $P\}$
- Lp contains some but not all TMs
- Whenever $L(M 1)=L(M 2),<M 1>\varepsilon L_{p}$ iff $<M 2>\varepsilon L_{p}$
- Thus L_{p} is undecidable
- Above proved undecidability from ATм $^{\text {- }}$
- but other undecidable languages such as $\mathrm{E}_{\text {TM }}$ usable
- $E Q_{\text {тM }}=\{<M 1, M 2>\mid M 1, M 2$ TMs, and $L(M 1)=L(M 2)\}$
- (p. 220) Theorem 5.4 EQтм is undecidable
- Assume TM R decides EQ Em $^{\text {m }}$
- Construct S to decide $E_{T M}$ (not $A_{T M}$) as follows:
- On input <M> to $\mathrm{E}_{\text {TM }}$
- Run R on <M,M1> where M1 a TM that rejects all inputs
- If R accepts (i.e. M matches machine with empty language), then S accepts (L(M) is emoty)
- If R rejects (M != M 1) then S rejects (M accepts something)
- If R exists we now have in S a decider for $E_{T M}$
- Not possible, so R cannot exist
- (p. 220) Reductions via Computational Histories
- Accepting Computational History of M given w
- Sequence of configurations C_{1}, \ldots C, where
- C_{1} is start, C_{1} is accepting, and C_{i} legally follows from $\mathrm{C}_{\mathrm{i}-1}$
- Remember a configuration $=u a q_{i} b v, b$ under tape head
- Note this is finite in length
- Rejection Computational History is similar
- (p. 221) Linear Bounded Automata (LBA)
- TM with finite tape
- Cannot move off of original tape: Off left or into "blanks"
- (p. 222) Lemma 5.8. Assume M is an LBA with exactly q states \& g symbols in Γ. There are exactly qng ${ }^{n}$ possible configurations of tape of length n.
- $A_{L B A}=\{<M, w>\mid M$ an LBA that accepts $w\}$
- (p. 222) Theorem 5.9 A LBA is decidable
- Have decider L keep track of each configuration that M enters while processing w
- If we ever enter same configuration a $2^{\text {nd }}$ time, reject
- This is after at most qng ${ }^{n}$ steps of simulating M
- If M accepts, L accepts
- If M rejects, L rejects
- (p. 223) $E_{L B A}=\{<M>\mid M$ an LBA where $L(M)$ is empty $\}$
- Theorem 5.10 ELBA is undecidable
- Assume TM R decides ELBA
- (p. 224) Construct an LBA B that recognizes all accepting computational histories for M on w
- If M accepts $w, L(B)=1$ string
- If M does not accept w, then $L(B)$ is empty
- Given <M,w>B constructs all valid histories as strings separated by \#s
- Construct S to decide $A_{T M}$ as follows
- Construct LBA B from <M,w>
- Run R on
- If R rejects, S accepts
- If R accepts, S rejects
- (p. 5.13) Theorem 5.12 Likewise $A L L_{\text {cFG }}=\{\langle G\rangle \mid G$ is CFG where $\mathrm{L}(\mathrm{G})=\Sigma^{*}$ is undecidable
- (p. 227) PCP: POST CORRESPONDENCE PROBLEM
- Consider a set of dominoes with 2 strings on each
- A match: list of dominoes where concatenated string on top is same as concatenated string on bottom
- Repetitions allowed
- PCP: Given a set of dominoes, is there a match?
- Can use duplicates
- Try Exercise 5.3 p. 239
- PCP is undecidable (see book for proof details)
- Reduction from $A_{T м}$ via accepting histories
- Given any <M,w> build a matching PCP instance
- IF PCP is decidable, so is $\mathrm{A}_{T M}$

