pp. 215-227. Undecidable Language Problems (Sec. 5.1)

- Remember $A_{TM} = \{<M, w> | M$ accepts $w\}$ is undecidable
 - When M does not accept w cannot decide if it is because it will eventually reject or loop
- **Reduction**: converting one problem A into another problem B, where we can use solver for B to solve A
 - Also A clearly cannot be “harder” than B, so if B is “decidable” then so is A.
 - **Standard reduction**:
 - Assume language L of interest **decidable by TM R**
 - Show that solving L means we can solve A_{TM}
 - By mapping any instance of A_{TM} into L
 - Thus if R exists, then we can construct a $TM S$ so that A_{TM} is decidable
 - But this is impossible, so no such R can exist
• \(\text{HALT}_{TM} = \{ <M, w> | M \text{ is a TM that halts on } w \} \)

• (p. 216) **Theorem 5.1.** \(\text{HALT}_{TM} \) is undecidable

 • Proof by contradiction. Assume \(\text{HALT}_{TM} \) is decidable by \(R \)

 • Build a decider for \(A_{TM} \)

 • Given \(<M, w> \) instance from \(A_{TM} \), pass unchanged to \(R \)

 • If \(R \) finds \(M \) halts on \(w \), \(R \) halts and accepts

 • If \(R \) finds \(M \) doesn’t halt on \(w \), \(R \) halts and rejects

 • Construct TM \(S \) to decide \(A_{TM} \) from \(R \) as follows

 • Run \(R \) on \(<M, w> \)

 • If \(R \) rejects, reject (we know \(M \) loops on \(w \))

 • If \(R \) accepts (we know \(M \) halts on \(w \)):

 • Simulate \(M \) on \(w \) until it halts

 • If \(M \) accepts \(w \) then \(S \) accepts

 • If \(M \) rejects \(w \), then \(S \) rejects

 • If \(R \) exists, then \(S \) as constructed above decides \(A_{TM} \)

 • **But \(A_{TM} \) is undecidable, so \(R \) cannot exist**

Diagram:

- Any Instance \(<M, w> \) of \(A_{TM} \)

 - Use \(<M, w> \) as is (No mapping needed)

 - Decider R for \(\text{HALT}_{TM} \)

 - If R accepts, Simulate M on w

 - If R rejects, reject \(<M, w> \)

 - If R accepts, Use Sim Results for Decision for \(A_{TM} \) instance
• $E_{TM} = \{<M>| M \text{ is a TM and } L(M) = \Phi\}$

• (p. 217) Theorem 5.2 E_{TM} is undecidable

• Assume R decides E_{TM}, i.e. given $<M>$ as input, R
 • accepts if $L(M)$ is empty
 • rejects if $L(M)$ is not

• Use R to construct an S that decides A_{TM} as follows
 • Given any $<M,w>$, first convert M to M_1 as follows
 • On any input x, if $x \neq w$, M_1 rejects
 • If $x = w$, run M on w and accept if M does
 • Only string M_1 can possibly accept is w
 • Now define S on an input $<M,w>$ as follows
 • Construct M_1 from M
 • Run R on $<M_1>$ (We are assuming R exists)
 • If R accepts (i.e. $L(M) = \Phi$), S rejects (w not in $L(M)$)
 • else if R rejects ($L(M_1)$ not empty), S accepts
 • w accepted by M
 • If R were decider for E_{TM}, then S is a decider for A_{TM}
• (p. 218) \(\text{REGULAR}_{\text{TM}} = \{<M>| M \text{ a TM } \& L(M) \text{ is regular}\} \)

• **Theorem 5.3** \(\text{REGULAR}_{\text{TM}} \) is undecidable

 • Assume \(\text{REGULAR}_{\text{TM}} \) is decidable by some TM \(R \)
 • Given some \(M \), \(R \) accepts if \(L(M) \) is regular
 • \(R \) rejects if \(L(M) \) is NOT regular

 • Construct \(S \) from \(R \) as decider for \(A_{\text{TM}} = \{<M,w>\} \) as follows
 • Take \(M \) from its input \(<M,w> \) and modify \(M \) to \(M_2 \) that
 • recognizes non-regular language \(\{0^n1^n|n \geq 0\} \) if \(M \) does not accept \(w \)
 • recognizes regular language \(\Sigma^* \) if \(M \) accepts \(w \)
 • \(M_2 \) constructed ONLY for purpose of feeding its description into assumed decider \(R \) for \(\text{REGULAR}_{\text{TM}} \)
 • Run \(R \) on \(<M_2> \)
 • If \(R \) accepts, then \(<M_2> \) recognizes a regular language
 • Which means \(M \) accepts \(w \)
 • If \(R \) rejects, then \(M_2 \) recognizes a non-reg language
 • Which means that \(M \) does not accept \(w \)
 • Which makes \(R \) a decider for \(A_{\text{TM}} \)
• (p. 219 & Prob. 5.28) **Rice’s Theorem:**
 • Let P be any property of the language of a TM
 • \(L_P = \{<M> | \text{M a TM such that } L(M) \text{ has property } P\} \)
 • \(L_P \) contains some but not all TMs
 • Whenever \(L(M_1) = L(M_2) \), \(<M_1> \in L_P \iff <M_2> \in L_P \)
 • Thus \(L_P \) is undecidable

• Above proved undecidability from \(A_{TM} \)
 • but other undecidable languages such as \(E_{TM} \) usable

• \(EQ_{TM} = \{<M_1, M_2> | \text{M}_1, \text{M}_2 \text{ TMs, and } L(M_1) = L(M_2)\} \)

• (p. 220) **Theorem 5.4** \(EQ_{TM} \) is undecidable
 • Assume TM R decides \(EQ_{TM} \)
 • Construct S to decide \(E_{TM} \) (not \(A_{TM} \)) as follows:
 • On input \(<M> \) to \(E_{TM} \)
 • Run R on \(<M, M_1> \) where \(M_1 \) a TM that rejects all inputs
 • If R accepts (i.e. \(M \) matches machine with empty language), then S accepts (\(L(M) \) is empty)
 • If R rejects (\(M! = M_1 \)) then S rejects (\(M \) accepts something)
 • If R exists we now have in S a decider for \(E_{TM} \)
 • Not possible, so R cannot exist
• (p. 220) Reductions via Computational Histories

• **Accepting Computational History** of M given w
 • Sequence of configurations \(C_1, \ldots, C_l\) where
 • \(C_1\) is start, \(C_l\) is accepting, and \(C_i\) legally follows from \(C_{i-1}\)
 • Remember a configuration = \(ua_qibv\), \(b\) under tape head
 • Note this is finite in length

• **Rejection Computational History** is similar

• (p. 221) **Linear Bounded Automata (LBA)**
 • TM with finite tape
 • Cannot move off of original tape: Off left or into “blanks”

• (p. 222) **Lemma 5.8. Assume** M is an LBA with exactly \(q\) states & \(g\) symbols in \(\Gamma\). There are exactly \(q^ng^n\) possible configurations of tape of length \(n\).

• \(ALBA = \{<M,w>| M \text{ an LBA that accepts } w\}\)

• (p. 222) **Theorem 5.9** \(ALBA\) is decidable
 • Have decider L keep track of each configuration that M enters while processing \(w\)
 • If we ever enter same configuration a 2\(^{nd}\) time, reject
 • This is after at most \(q^ng^n\) steps of simulating M
 • If M accepts, L accepts
 • If M rejects, L rejects
• (p. 223) \(E_{LBA} = \{<M> | M \text{ an LBA where } L(M) \text{ is empty}\} \)

• Theorem 5.10 \(E_{LBA} \) is undecidable
 • Assume TM \(R \) decides \(E_{LBA} \)
 • (p. 224) Construct an LBA \(B \) that recognizes all accepting computational histories for \(M \) on \(w \)
 • If \(M \) accepts \(w \), \(L(B) = 1 \) string
 • If \(M \) does not accept \(w \), then \(L(B) \) is empty
 • Given \(<M,w> \) \(B \) constructs all valid histories as strings separated by \#s
 • Construct \(S \) to decide \(A_{TM} \) as follows
 • Construct LBA \(B \) from \(<M,w> \)
 • Run \(R \) on \(\)
 • If \(R \) rejects, \(S \) accepts
 • If \(R \) accepts, \(S \) rejects

• (p. 5.13) Theorem 5.12 Likewise \(ALL_{CFG} = \{<G> | G \text{ is CFG where } L(G) = \Sigma^* \} \) is undecidable
• (p. 227) PCP: POST CORRESPONDENCE PROBLEM
 • Consider a set of dominoes with 2 strings on each
 • A **match**: list of dominoes where concatenated string on top is same as concatenated string on bottom
 • Repetitions allowed
 • PCP: Given a set of dominoes, is there a match?
 • Can use duplicates
 • Try Exercise 5.3 p. 239
 • PCP is undecidable (see book for proof details)
 • Reduction from A_{TM} via accepting histories
 • Given any $<M,w>$ build a matching PCP instance
 • IF PCP is decidable, so is A_{TM}