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(p. 299) SAT: Boolean Satisfiability

 wff: well-formed-formula constructed from

– A set V of Boolean variables

– Boolean operations AND, OR, NOT

 Satisfiability: is there a substitution of 0s and 

1s to variables that makes the wff true

– i.e. makes all clauses simultaneously true

 Unsatisfiability: no substitution makes all 

clauses true at same time

 See references in “Links” class page
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CNF: Clausal Normal Form

 wff restructured as AND of a set of clauses

– Each clause an OR of a set of literals

– Each literal a variable or its negation

 For a wff in clausal form to be true

– All clauses must be true

– For any clause to be true at least one literal must 

be true

 Example: (~x v y) & (x v y) & (x v ~y)

– x=1, y=1 makes expression true

 (~x v y) & (x v y) & (x v ~y) & (~x v ~y)

– No assignment of values make this true
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Why Does SAT Matter

 Huge range of direct applications

 Will show that ALL computable functions can 

be converted into a SAT problem

 If we can solve SAT quickly, we can solve any

computable problem quickly

 But no one has been able to find such a 

solution!
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Applications

Following list taken from http://logos.ucd.ie/~jpms/talks/talksite/jpms-

wodes08.pdf

 Circuit construction and simulation

 Model checking: H/W, S/W, test patterns

 AI: Planning; Knowledge representation; Games

 Bioinformatics: Haplotype inference; Pedigree checking; 

Maximum quartet consistency; etc.

 Design automation:

 Equivalence checking; Delay computation; Fault diagnosis; Noise 

analysis; etc.

 Security: Cryptanalysis; Inversion attacks on hash functions; etc.

 Computationally hard problems: Graph coloring; Traveling 

salesperson; etc.

 Mathematical problems: van der Waerden numbers; etc

 Core engine for many other problem domains

Introductio Slide 5



Notre Dame CSE 34151: Theory of Computing: Fall 2017

SAT Problem Sizes

 Hundreds of thousands to millions of variables

 Huge numbers of clauses

 Often very large numbers of literals per clause

 Sample problem sources:

– http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

 There is even a yearly competition that has 

been going on for decades

– Current 2017: https://baldur.iti.kit.edu/sat-

competition-2017/index.php?cat=certificates

– 2016: https://baldur.iti.kit.edu/sat-competition-

2016/index.php?cat=certificates
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Example: Sudoku to SAT

 Define 729 variables xi,j,d (1≤i,j,d≤9) such that

– xi,j,d = 1 if cell (i,j) has digit d, 0 otherwise

 81 clauses: 1 for each cell (i,j) to ensure it has a digit: 

– (xi,j,1 V xi,j,2 V … xi,j,9)

 81 sets of 36 clauses to ensure no cell has 2 digits:

– For each of 1≤d<d’≤9: (~xi,j,d V ~xi,j,d’)

 To state that row i, for example, has all 9 digits:

– AND of 9 clauses (1 for each value of d) where d’th clause is (xi,1,d V … V xi,9,d )

– And 9 sets of 36 = 324 clauses to ensure uniqueness (~xi,j,d V ~xi,j’,d)

 Repeat construction for all rows, columns, grids

 Total of 11,745 clauses (most with 2 literals/clause, rest have 9)

 Initialize cells by setting certain variables, e.g. x1,1,5=1 and x1,1,d = 0 for d≠5
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Fill in all blanks 

so 1…9 appear on 

every row, column, 
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A 2x2 Sudoku

1

 8 variables: x1,1,1, x1,1,2, x1,2,1, x1,2,2, x2,1,1, x2,1,2, x2,2,1, x2,2,2

 4 clauses to ensure a digit/cell: 

– (x1,1,1 V x1,1,2)& (x1,2,1 V x1,2,2)&(x2,1,1 V x2,1,2)&(x2,2,1 V x2,2,2)

 4 sets of 1 clause to ensure no duplicates: 

– (~x1,1,1 V ~x1,1,2)&(~x1,2,1 V ~x1,2,2)&(~x2,1,1 V ~x2,1,2)&(~x2,2,1 V ~x2,2,2)

 4 clauses for row 1: 

– (x1,1,1 V x1,2,1)&(x1,1,2 V x1,2,2)&(~x1,1,1 V ~x1,2,1)&(~x1,1,2 V ~x1,2,2)

 4 clauses for row 2: 

– (x2,1,1 V x2,2,1)&(x2,1,2 V x2,2,2)&(~x2,1,1 V ~x2,2,1)&(~x2,1,2 V ~x2,2,2)

 4 clauses for column 1: 

– (x1,1,1 V x2,1,1)&(x1,1,2 V x2,1,2)&(~x1,1,1 V ~x2,1,1)&(~x1,1,2 V ~x2,1,2)

 4 clauses for column 2: 

– (x1,2,1 V x2,2,1)&(x1,2,2 V x2,2,2) &(~x1,2,1 V ~x2,2,1)&(~x1,2,2 V ~x2,2,2)

 2 Initialization clauses: x1,1,1 & ~x1,1,2
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Variants of SAT in CNF

 1-SAT: all clauses have exactly 1 literal

– Each clause is one literal

– If any 2 clauses are a variable & its complement, 

then reject

– E.g. x1 & x2 & ~x3 satisfied by x1 =1,x2 =1, x3 =0

– But add on clause ~x1 and unsatisfiable

 2-SAT: all clauses have at most 2 literals

– Clause: (Li1 V Li2)

 3-SAT: all clauses have at most 3 literals

– Clause: (Li1 V Li2 V Li3)

– At least one literal in each clause must be true
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The Simplest SAT Solver

 Generate all 2V assignments to V variables

 For each assignment, check each clause

 Satisfiable: Some assignment makes all clauses true

 Unsatisfiable: no assignment works
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x y z x V ~y y V z ~xV~z ~xV~yVz xVyV~z All 

Clauses

All but 

last

0 0 0 1 0 1 1 1 0 0

0 0 1 1 1 1 1 0 0 1

0 1 0 0 1 1 1 1 0 0

0 1 1 0 1 1 1 1 0 0

1 0 0 1 0 1 1 1 0 0

1 0 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 1 0 0

1 1 1 1 1 0 1 1 0 0
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Brute Force Approach
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Brute Force Algorithm
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for each of 2V combinations of variable values

for each clause in wff

for each literal in clause

look up variable in assignment

if literal is true: break to next clause

if all literals are false: 

break to next combination

if all clauses are true: break “Satisfiable”

if no combination satisfied: “Unsatisfiable”

K

C

Time Complexity: O(2V*C*K)
• V = # variables

• C = # Clauses

• K = # Literals per Clause

Verifier
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A Python Implementation
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Dividing by CK=# Literals
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Backtracking: Core to Real Solvers

 Consider “incremental” approach that 

generates assignment dynamically

 Keep track of state of clauses under current 

partial assignment; clauses may be

– True: some literal in clause has a variable value 

that makes it true

– False: all literals in clause have variable values that 

make literals false

– Undetermined: one or more literals have variables 

without any current assigned value

 Keep “stack” of order of assignments to allow 

backtrack if current assignment doesn’t work
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Basic Backtracking

 Select some variable 

 Select value to give to that variable (to make some 

clause true)

– Save (on stack) variable and value as a “CHOICE POINT”

 Ignore all clauses now true

 If no clause remains, declare “Satisfied”

– Values on stack are satisfying assignment

 If some clause is now “false”:

– Go to top choice point, reverse value and try again

– If top variable has tried both values, pop choice point,  and 

repeat on choice point below below

– If stack is now empty, declare “Unsatisfiable”

 If no clauses false and some still undetermined, 

repeat above on a different variable that has no value
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Equivalent to a “Tree Traversal”
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(xV~y)&(yVz)&(~xV~z)&(~xV~yVz)
x=1

(yVz)&(~z)&(~yVz)

z=0

(y)&(~y)

Not Satisfiable!

y=0

(z)&(z)

z=1

Satisfied

z=1

Not Satisfiable!

x=0

(~y)&(yVz)&(~yVz)`

Red: Backtrack to last Choice Point and try another
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Another Example
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(xV~y)&(yVz)&(~xV~z)&(~xV~yVz)&(xVyV~z)
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The Unit Clause Rule

 Additional trick: When a clause has only one 

undetermined literal

– Add a choice point entry with that variable 

– Assign value to variable to make literal true

– With flag that reversing value need not be tried

 Many other heuristics have been developed

 Average complexity greatly reduced

 But for kSAT, k>2, worst case still O(2V)
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Special Case: 2SAT

 Speedup observation:

– Assume we guess xi = 1 (build a choice point)

– All clauses with xi as a literal are now true

 Now look at all clauses of form (~xi V  Lj )

– ~xi is false from assignment

– so Li must be true => new assignment

– Can repeat as long as we generate new assignments

 Backtrack when we get conflicting assignments 

to same variable

 Variations are polynomial even in worst case

– Possible to get linear time
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Alternative 2SAT Graph Algorithm

 If V variables, generate 2V vertices

– pairs labelled xi and ~xi

 For each clause (Li V Lk) using variables xi and 

xk, generate 2 edges in the graph

– ~Li to Lk

– ~Lk to Li 

 Unsatisfiable if for any xi there is a path

– from xi to ~xi

– and ~xi to xi

 Satisfiable if no such path
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2SAT as Domino Chains
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from youtube
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Example: 

(~x V y) & (x V y) & (x V ~y)
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x

y

~x

~y

If x is false

then y must be true

If y is false

then x must be true

What happens when we add clause (~x V ~y)?
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Your Turn: Bipartite Matching

 What are variables?

 How to guarantee at 

least one match per 

vertex?

 How to guarantee 

only 1 match per 

vertex?
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