Boolean Satisfiability: The Central Problem of Computation

Peter Kogge
SAT: Boolean Satisfiability

- **wff**: well-formed-formula constructed from
 - A set V of Boolean variables
 - Boolean operations AND, OR, NOT
- **Satisfiability**: is there a substitution of 0s and 1s to variables that makes the wff true
 - i.e. makes all clauses simultaneously true
- **Unsatisfiability**: no substitution makes all clauses true at same time
- See references in “Links” class page
CNF: Clausal Normal Form

- wff restructured as AND of a set of clauses
 - Each clause an OR of a set of literals
 - Each literal a variable or its negation

- For a wff in clausal form to be true
 - All clauses must be true
 - For any clause to be true at least one literal must be true

- Example: \((\sim x \lor y) \land (x \lor y) \land (x \lor \sim y)\)
 - \(x=1, y=1\) makes expression true

- \((\sim x \lor y) \land (x \lor y) \land (x \lor \sim y) \land (\sim x \lor \sim y)\)
 - No assignment of values make this true
Why Does SAT Matter

- Huge range of direct applications
- Will show that \textit{ALL} computable functions can be converted into a SAT problem
- If we can solve SAT quickly, we can solve \textit{any} computable problem quickly
- But \textit{no one} has been able to find such a solution!
Applications

- Circuit construction and simulation
- Model checking: H/W, S/W, test patterns
- AI: Planning; Knowledge representation; Games
- Bioinformatics: Haplotype inference; Pedigree checking; Maximum quartet consistency; etc.
- Design automation:
 - Equivalence checking; Delay computation; Fault diagnosis; Noise analysis; etc.
- Security: Cryptanalysis; Inversion attacks on hash functions; etc.
- Computationally hard problems: Graph coloring; Traveling salesperson; etc.
- Mathematical problems: van der Waerden numbers; etc
- Core engine for many other problem domains
SAT Problem Sizes

- Hundreds of thousands to millions of variables
- Huge numbers of clauses
- Often very large numbers of literals per clause
- Sample problem sources:
- There is even a yearly competition that has been going on for decades
 - 2016: https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=certificates
Define 729 variables $x_{i,j,d}$ $(1 \leq i,j,d \leq 9)$ such that
- $x_{i,j,d} = 1$ if cell (i,j) has digit d, 0 otherwise

81 clauses: 1 for each cell (i,j) to ensure it has a digit:
- $(x_{i,j,1} \lor x_{i,j,2} \lor \ldots \lor x_{i,j,9})$

81 sets of 36 clauses to ensure no cell has 2 digits:
- For each of $1 \leq d < d' \leq 9$: $(\neg x_{i,j,d} \lor \neg x_{i,j,d'})$

To state that row i, for example, has all 9 digits:
- AND of 9 clauses (1 for each value of d) where d'th clause is $(x_{i,1,d} \lor \ldots \lor x_{i,9,d})$
- And 9 sets of 36 = 324 clauses to ensure uniqueness $(\neg x_{i,j,d} \lor \neg x_{i,j',d})$

Repeat construction for all rows, columns, grids

Total of 11,745 clauses (most with 2 literals/clause, rest have 9)

Initialize cells by setting certain variables, e.g. $x_{1,1,5} = 1$ and $x_{1,1,d} = 0$ for $d \neq 5$
A 2x2 Sudoku

- 8 variables: $x_{1,1,1}$, $x_{1,1,2}$, $x_{1,2,1}$, $x_{1,2,2}$, $x_{2,1,1}$, $x_{2,1,2}$, $x_{2,2,1}$, $x_{2,2,2}$
- 4 clauses to ensure a digit/cell:
 - $(x_{1,1,1} \lor x_{1,1,2}) \land (x_{1,2,1} \lor x_{1,2,2}) \land (x_{2,1,1} \lor x_{2,1,2}) \land (x_{2,2,1} \lor x_{2,2,2})$
- 4 sets of 1 clause to ensure no duplicates:
 - $(\neg x_{1,1,1} \lor \neg x_{1,1,2}) \land (\neg x_{1,2,1} \lor \neg x_{1,2,2}) \land (\neg x_{2,1,1} \lor \neg x_{2,1,2}) \land (\neg x_{2,2,1} \lor \neg x_{2,2,2})$
- 4 clauses for row 1:
 - $(x_{1,1,1} \lor x_{1,2,1}) \land (x_{1,1,2} \lor x_{1,2,2}) \land (\neg x_{1,1,1} \lor \neg x_{1,2,1}) \land (\neg x_{1,1,2} \lor \neg x_{1,2,2})$
- 4 clauses for row 2:
 - $(x_{2,1,1} \lor x_{2,2,1}) \land (x_{2,1,2} \lor x_{2,2,2}) \land (\neg x_{2,1,1} \lor \neg x_{2,2,1}) \land (\neg x_{2,1,2} \lor \neg x_{2,2,2})$
- 4 clauses for column 1:
 - $(x_{1,1,1} \lor x_{2,1,1}) \land (x_{1,1,2} \lor x_{2,1,2}) \land (\neg x_{1,1,1} \lor \neg x_{2,1,1}) \land (\neg x_{1,1,2} \lor \neg x_{2,1,2})$
- 4 clauses for column 2:
 - $(x_{1,2,1} \lor x_{2,2,1}) \land (x_{1,2,2} \lor x_{2,2,2}) \land (\neg x_{1,2,1} \lor \neg x_{2,2,1}) \land (\neg x_{1,2,2} \lor \neg x_{2,2,2})$
- 2 Initialization clauses: $x_{1,1,1}$ & $\neg x_{1,1,2}$
Variants of SAT in CNF

- **1-SAT**: all clauses have exactly 1 literal
 - Each clause is one literal
 - If any 2 clauses are a variable & its complement, then reject
 - E.g. \(x_1 \& x_2 \& \sim x_3\) satisfied by \(x_1 = 1, x_2 = 1, x_3 = 0\)
 - But add on clause \(\sim x_1\) and unsatisfiable

- **2-SAT**: all clauses have at most 2 literals
 - Clause: \((L_{i1} \lor L_{i2})\)

- **3-SAT**: all clauses have at most 3 literals
 - Clause: \((L_{i1} \lor L_{i2} \lor L_{i3})\)
 - At least one literal in each clause must be true
The Simplest SAT Solver

- Generate all 2^V assignments to V variables
- For each assignment, check each clause
- **Satisfiable**: Some assignment makes all clauses true
- **Unsatisfiable**: no assignment works

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$x \lor \neg y$</th>
<th>$y \lor z$</th>
<th>$\neg x \lor \neg z$</th>
<th>$\neg x \lor y \lor z$</th>
<th>All Clauses</th>
<th>All but last</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SAT
Brute Force Approach

Generate Next Possible Assignment

Verify if Assignment “Satisfies” WFF

Tried all possible assignments

“Unsatisfiable”

WFF not satisfied by assignment

All clauses are true

“Satisfiable”
Brute Force Algorithm

for each of 2^V combinations of variable values

for each clause in wff

for each literal in clause

look up variable in assignment

if literal is true: break to next clause

if all literals are false: break to next combination

if all clauses are true: break “Satisfiable”

if no combination satisfied: “Unsatisfiable”

Time Complexity: $O(2^V * C * K)$

- $V = \#$ variables
- $C = \#$ Clauses
- $K = \#$ Literals per Clause
A Python Implementation

Time (Microseconds)

Variables

S2 S3 S4 S5 S6 U2 U3 U4 U5 U6
Dividing by $CK=\#$ Literals

- Time/Literal (Microseconds)
- Number of Variables
- Satisfiable
- Unsatisfiable
- $46+0.19\times 2^V$
Backtracking: Core to Real Solvers

- Consider “incremental” approach that generates assignment dynamically
- Keep track of state of clauses under current partial assignment; clauses may be
 - **True**: some literal in clause has a variable value that makes it true
 - **False**: all literals in clause have variable values that make literals false
 - **Undetermined**: one or more literals have variables without any current assigned value
- Keep “stack” of order of assignments to allow backtrack if current assignment doesn’t work
Basic Backtracking

- Select some variable
- Select value to give to that variable (to make some clause true)
 - Save (on stack) variable and value as a “CHOICE POINT”
- Ignore all clauses now true
- If no clause remains, declare “Satisfied”
 - Values on stack are satisfying assignment
- If some clause is now “false”:
 - Go to top choice point, reverse value and try again
 - If top variable has tried both values, pop choice point, and repeat on choice point below below
 - If stack is now empty, declare “Unsatisfiable”
- If no clauses false and some still undetermined, repeat above on a different variable that has no value
Equivalent to a “Tree Traversal”

\[(x \lor \neg y) \land (y \lor z) \land (\neg x \lor \neg z) \land (\neg x \lor \neg y \lor z)\]

- **x = 1**
 - \((y \lor z) \land (\neg z) \land (\neg y \lor z)\)
 - **z = 0**
 - \((y) \land (\neg y)\)
 - Not Satisfiable!
 - **z = 1**
 - \((\neg y) \land (y \lor z) \land (\neg y \lor z)\)
- **x = 0**
 - \((\neg y) \land (y \lor z) \land (\neg y \lor z)\)
 - **y = 0**
 - \((z) \land (z)\)
 - **z = 1**
 - Satisfied
 - **y = 1**
 - \((\neg y) \land (y \lor z) \land (\neg y \lor z)\)

Red: Backtrack to last Choice Point and try another
Another Example

\((x \lor \sim y) \land (y \lor z) \land (\sim x \lor \sim z) \land (\sim x \lor y \lor z) \land (x \lor y \lor \sim z)\)
The Unit Clause Rule

- Additional trick: When a clause has only one undetermined literal
 - Add a choice point entry with that variable
 - Assign value to variable to make literal true
 - With flag that reversing value need not be tried

- Many other heuristics have been developed
- Average complexity greatly reduced
- But for kSAT, $k > 2$, worst case still $O(2^V)$
Special Case: 2SAT

- Speedup observation:
 - Assume we guess \(x_i = 1 \) (build a choice point)
 - All clauses with \(x_i \) as a literal are now true

- Now look at all clauses of form \((\neg x_i \lor L_j)\)
 - \(\neg x_i \) is false from assignment
 - so \(L_i \) must be true \(\Rightarrow\) new assignment
 - Can repeat as long as we generate new assignments

- Backtrack when we get conflicting assignments to same variable

- Variations are *polynomial* even in worst case
 - Possible to get linear time
Alternative 2SAT Graph Algorithm

- If V variables, generate 2V vertices
 - pairs labelled x_i and $\neg x_i$
- For each clause $(L_i \lor V \lor L_k)$ using variables x_i and x_k, generate 2 edges in the graph
 - $\neg L_i$ to L_k
 - $\neg L_k$ to L_i
- Unsatisfiable if for any x_i there is a path
 - from x_i to $\neg x_i$
 - and $\neg x_i$ to x_i
- Satisfiable if no such path
2SAT as Domino Chains from youtube
Example:

\((\neg x \lor y) \land (x \lor y) \land (x \lor \neg y)\)

If \(x\) is false then \(y\) must be true

If \(y\) is false then \(x\) must be true

What happens when we add clause \((\neg x \lor \neg y)\)?
Your Turn: Bipartite Matching

- What are variables?
- How to guarantee at least one match per vertex?
- How to guarantee only 1 match per vertex?