Boolean Satisfiability:
The Central Problem
of Computation

Peter Kogge

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 1

(p- 299) SAT: Boolean Satisfiability

 wff: well-formed-formula constructed from

— A set V of Boolean variables
— Boolean operations AND, OR, NOT

 Satisfiability: is there a substitution of Os and
1s to variables that makes the wif true

— I.e. makes all clauses simultaneously true

 Unsatisfiability: no substitution makes all
clauses true at same time

 See references in “Links” class page

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 2

CNF: Clausal Normal Form

1 wiff restructured as AND of a set of clauses
— Each clause an OR of a set of literals
— Each literal a variable or its negation

d For a wff in clausal form to be true
— All clauses must be true

— For any clause to be true at least one literal must
be true

d Example: (~=xvy)& XVYy) & (XV~y)
— X=1, y=1 makes expression true
d(xvy)&XVvy)& (XV~y)& (=XV ~y)

— No assignment of values make this true

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 3

Why Does SAT Matter

 Huge range of direct applications

d Will show that ALL computable functions can
be converted into a SAT problem

4 If we can solve SAT quickly, we can solve any
computable problem quickly

J But no one has been able to find such a
solution!

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 4

Applications

Following list taken from http://logos.ucd.ie/~jpms/talks/talksite/[pms-
wodes08.pdf

U OO O

U O

Circuit construction and simulation
Model checking: H/W, S/W, test patterns
Al: Planning; Knowledge representation; Games

Bioinformatics: Haplotype inference; Pedigree checking;
Maximum quartet consistency; etc.

Design automation:

Equivalence checking; Delay computation; Fault diagnosis; Noise
analysis; etc.

Security: Cryptanalysis; Inversion attacks on hash functions; etc.

Computationally hard problems: Graph coloring; Traveling
salesperson,; etc.

Mathematical problems: van der Waerden numbers; etc
Core engine for many other problem domains

Introductio Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 5

SAT Problem Sizes

4 Hundreds of thousands to millions of variables
1 Huge numbers of clauses
 Often very large numbers of literals per clause

1 Sample problem sources:
— http://lwww.cs.ubc.ca/~hoos/SATLIB/benchm.html

d There is even a yearly competition that has
been going on for decades

— Current 2017: https://baldur.iti.kit.edu/sat-
competition-2017/index.php?cat=certificates

— 2016: https://baldur.iti.kit.edu/sat-competition-
2016/index.php?cat=certificates

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 6

D00

Example: Sudoku to SAT

513 ; 5131416781912
6 1]9]5 o 6[7|2]1]19]5]3]4]8
IE G Fill in all blanks o834 2]5[6]7
8 6 3 so 1...9 appear on s|5(9]7|6]114]2]3
4 8| |3 1 every row, column, 41216]8|5[3]7|9|1
[2 L 6 and 3x3 grld 7 l 319 Z 418 5 §)
6 28 gl6|1]5]3]7]2]8]4
4[1]9 5 218|7l4]1]9]6]3]5

8 719 3lals]2]8l6]1]7]9

Define 729 variables X;; 4 (1=i,j,d<9) such that
X;ja = 1if cell (i,j) has digit d, O otherwise
81 clauses: 1 for each cell (i,j) to ensure it has a digit:
— (X1 VX2 V.o Xi0)
81 sets of 36 clauses to ensure no cell has 2 digits:
— For each of 1=d<d’s9: (~X;; 4 V ~X;;)
To state that row i, for example, has all 9 digits:
— AND of 9 clauses (1 for each value of d) where d’th clause is (X; ;4 V ... VX o4)
— And 9 sets of 36 = 324 clauses to ensure uniqueness (~X;;q V ~X; q)
Repeat construction for all rows, columns, grids
Total of 11,745 clauses (most with 2 literals/clause, rest have 9)

Initialize cells by setting certain variables, e.g. X, ; s=1 and x, , 4 = 0 for d#5
SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 7

A 2x2 Sudoku

1 1| 2

8 variables: Xy 11, X112, X1.2.15 X1220 X211 X2,1,20 X2,210 X2,2.2
4 clauses to ensure a digit/cell:
= (X111 VX112)& X121V X122)&(X511V X512)&(X021V X525)
4 sets of 1 clause to ensure no duplicates:
= (X121 V X112)&(X121 V ~X122)&(~X5 11 V ~X512)&(X521 V ~X35)
4 clauses for row 1:
= (X111 VX121)&X1 12V X122)&(~X111 V ~X121)&(X11, V ~X15)
4 clauses for row 2:
= (X211 VX021)&(X212V X322)&(~X311 V ~X521)&(~X51, V ~X35)
4 clauses for column 1:
= (X111 VX211)&X112V X312)& (X111 V ~Xp11)&(X11,V ~X31)
4 clauses for column 2:
= (X121 VX21)&(X122V X322) &(=X121 V ~X521)&(~X1 2,V ~X3,)

2 Initialization clauses: X111 & ~Xq11,

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 8

Variants of SAT in CNF

d 1-SAT: all clauses have exactly 1 literal
— Each clause is one literal

— If any 2 clauses are a variable & its complement,
then reject

— E.g. X; & X, & ~X;5 satisfied by x; =1,x, =1, x5 =0
— But add on clause ~x; and unsatisfiable

d 2-SAT: all clauses have at most 2 literals
— Clause: (L;; V L))

d 3-SAT: all clauses have at most 3 literals
— Clause: (L;; VL, VL)
— At least one literal in each clause must be true

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 9

The Simplest SAT Solver

[Generate all 2¥ assignments to V variables

O For each assignment, check each clause

] Satisfiable: Some assignment makes all clauses true
d Unsatisfiable: no assignment works\

XV~y|yVz | ~xV~z | ~xV~yVz | xVWyV~z Ail All but
Clauses last

0O 0 O 1 0 1 1 1 10 | 0
glojal o | 4 | 4 | 4 g - --':-'0--:--*1
0 1 0 O 1 1 1 1 1 0 , O
01 1 0 1 1 1 1 10 ! o
10 0 1 0 1 1 1 i o0 ! o
1 0 1 1 1 0 1 1 , 0 ' o0
1 1 0 1 1 1 0 1 : 0 : 0
1 1 1 1 1 0 1 1 l 0 1 O

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 10

Brute Force Approach

A 4

Generate
Next
Possible
Assignment

SAT

Tried all
possible
vassignments

“Unsatisfiable”

Verify if
Assignment
“Satisfies” WFF not
satisfied
WFF oy
assignment
All clauses
are true
v
“Satisfiable”

Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 11

Brute Force Algorithm

_for each of 2V combinations of variable values
for each clause in wff
— for each literal in clause
K‘i: look up variable in assignment
If literal I1s true: break to next clause
If all literals are false:
_ break to next combination
if all clauses are true: break “Satisfiable”,

" if no combination satisfied: “Unsatisfiable”

Time Complexity: O(2V*C*K)
« V =#variables

« C=#Clauses

« K =#Literals per Clause

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 12

Time (Microseconds)

1.E+10

1.E+09

1.E+08

1.E+07

= =
m m
+ o+
o O
a o

1.E+04

1.E+03

© S2

SAT

A Python Implementation

AS3

¢ %

10

%

Variables

S4 & S5 X S6

Notre Dame CSE 34151: Theory of Computing: Fall 2017

® U2

A U3

u4

® U5

® Ub

Slide 13

100

Dividing by CK=# Literals

1.E+08

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03

1.E+02 I"'-"”r

1.E+01

Time/Literal (Microseconds)

100

Number of Variables
® Satisfiable A Unsatisfiable —===46+0.19*2AV

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 14

Backtracking: Core to Real Solvers

d Consider “incremental” approach that
generates assignment dynamically

1 Keep track of state of clauses under current
partial assignment; clauses may be

— True: some literal in clause has a variable value
that makes it true

— False: all literals in clause have variable values that
make literals false

— Undetermined: one or more literals have variables
without any current assigned value

1 Keep “stack” of order of assignments to allow
backtrack if current assignment doesn’t work

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 15

Basic Backtracking

d Select some variable

d Select value to give to that variable (to make some
clause true)
— Save (on stack) variable and value as a “CHOICE POINT”

d Ignore all clauses now true

d If no clause remains, declare “Satisfied”
— Values on stack are satisfying assignment

O If some clause is now “false”:
— Go to top choice point, reverse value and try again

— If top variable has tried both values, pop choice point, and
repeat on choice point below below

— If stack is now empty, declare “Unsatisfiable”

d If no clauses false and some still undetermined,
repeat above on a different variable that has no value

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 16

Equivalent to a “Tree Traversal”
(XV~Y)&(YVz2)&(~xV~2)&(~xV~yVz)

(~y)&(yVz)&(~yVz)
z=0 —
/\ y=0
(Y)&(~Y) Not Satisfiable!
Not Satisfiable! (2)&(2)
zzl/
Satisfied

Red: Backtrack to last Choice Point and try another

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 17

Another Example
(XV~y)&(YV2)&(~xV~2)&(~xV~yVz)&(XxVyV~2)

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 18

The Unit Clause Rule

d Additional trick: When a clause has only one
undetermined literal

— Add a choice point entry with that variable
— Assign value to variable to make literal true
— With flag that reversing value need not be tried

d Many other heuristics have been developed
d Average complexity greatly reduced
d But for KSAT, k>2, worst case still O(2V)

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 19

Special Case: 2SAT

d Speedup observation:
— Assume we guess X; = 1 (build a choice point)
— All clauses with x; as a literal are now true

d Now look at all clauses of form (~x; V L;)
— ~X; IS false from assignment
— SO L; must be true => new assignment
— Can repeat as long as we generate new assignments

d Backtrack when we get conflicting assignments
to same variable

 Variations are polynomial even in worst case
— Possible to get linear time

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 20

Alternative 2SAT Graph Algorithm

4 If V variables, generate 2V vertices
— pairs labelled x; and ~x;

d For each clause (L;V L,) using variables x; and
X,, generate 2 edges in the graph
— ~L;to L,
— ~L, to L,
d Unsatisfiable if for any x; there is a path
— from Xx; to ~x;
— and ~X; to x;
] Satisfiable if no such path

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 21

2SAT as Domino Chains

Ly

|l

O————

——

- ——
— —
—

i
|

l!‘.

’Q
!

\

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 22

Example:
(~xVy)&(XVy)& (xV-~y)

If y is false
then x must be true

If x is false
then y must be true

©

What happens when we add clause (~x V ~y)?

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 23

Your Turn: Bipartite Matching

d What are variables? (») ()
d How to guarantee at

least one match per

vertex? O ©

d How to guarantee
only 1 match per
vertex?

®
©

SAT Notre Dame CSE 34151: Theory of Computing: Fall 2017 Slide 24

