pp. 176-176-182. Variants of Turing Machines (Sec. 3.2)

- Remember: a language is Turing recognizable if some TM accepts it.
- Adding “features” may simplify programmability but DO NOT affect what a TM can compute.
 - Anything a “fancy” TM can compute, can be computed with a basic TM (perhaps with more complex set of δs.)
- **Option to “stay still”** (p. 176) (not move head)
 - δ:QxΓ → QxΓx {L, R, S} – S means stay still
 - δ(q,a) -> (r,b,S) can be replaced by 2 transitions of standard TM
 - δ(q,a) -> (r_1,b,R)
 - δ(r_1,x) -> (q,x,L) for all x in Γ
 - Thus no TM with “S” option can compute anything not computable by basic TM
 - But may be “faster” or easier to program
- **MultiTape TM** (p. 176)
 - Assume M has **k tapes**: all use same \(\Gamma \)
 - 1\(^{st} \) one as in basic machine (i.e. holds initial input)
 - Rest are initially all blank
 - Separate read/write head under each tape
 - That can be moved individually
 - \(\delta: Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R,S\}^k \)
 - \(\delta(q,a_1, \ldots, a_k) = (r, b_1, \ldots, b_k, d_1, \ldots, d_k) \) means
 - If in state \(q \), and for all \(1 \leq i \leq k \), tape i has \(a_i \) under its head
 - Then for all \(I \), change \(a_i \) to \(b_i \) on tape i
 - And for all \(I \), move tape i in direction \(d_i \)
 - **Proof**: assume M is a \(k \) tape TM \((Q,\Sigma,\Gamma,\delta,q_{\text{start}},q_{\text{accept}},q_{\text{reject}})\). Construct equivalent 1-tape TM \(S \)
 \((Q',\Sigma,\Gamma',\delta',q'_{\text{start}},q'_{\text{accept}},q'_{\text{reject}})\) as follows:
 - Assume starting tape is \(w_1 \ldots w_n \)
 - Add new characters to \(\Gamma' \)
 - For each \(x \) in \(\Gamma \), add a new symbol \(x' \) to \(\Gamma' \)
 - ‘ indicates a tape head is on that cell
 - Include a □’
 - Add a special symbol \# to \(\Gamma' \)
 - To mark start of a new simulated “tape”
• Add new initial states with transitions that do following
 • Insert a # onto left of tape, moving w right one place
 • Replace w₁ by w₁’
 • Write k-1 copies of #□’ to end of w
 • Write a final # at end
 • Resulting tape looks like #w₁’...wₙ#□’#□’ ... #□’#
• The ith “#” indicate the start of the ith tape
• The ith ‘ed symbol indicates the current position of
 the ith tape head
• (p. 177) Fig. 3.14 diagrams 3-tape example
• To simulate with S a single transition of M from state q
 • Sequentially try each rule from M that starts with q:
 • Move to the ith ‘ed symbol and compare to aᵢ
 • If we find a mismatch, quit and try next rule
 • If we have match on all aᵢs, go back to start of tape
 and go back to each ‘ed symbol in sequence
 • Replace by bᵢ
 • Move simulated tape head i by moving L, R, or S,
 and replace that symbol by its ‘ed version
 • On a move R where we hit a #
 • 1ˢᵗ move entire rest of string right one position
 • Then write a blank
• **B: Bidirectional Infinite Tape**
 - Tape goes on forever in both directions, not just right
 - First emulate on a 2-tape TM
 - Tape 1 is the right hand side of the double sided tape
 - Tape 2 is the left handed side of the double sided tape
 - Have a special # on start of both sides of tape
 - Two sets of states from B:
 - one where we are on right hand side of B’s tape
 - other where we are on left hand side of B’s tape
 - If in a right-side of tape state and move L, add additional states to check if new cell is cell 0
 - This is case where B has crossed the center of its tape, moving left
 - If so, switch to correct state on 2nd tape
 - And whenever original state says move left, new transition says more right, and vice versa
 - If on 2nd tape, and move right into a cell with a #
 - I.E. have crossed the center of the original tape and moving right
 - Move left to cell 0, switch to equivalent state that uses 1st tape
 - Then emulate 2-tape machine on a basic TM
S: TM with a Stack

- \(\delta : Q \times \Gamma_1 \times \Gamma_2 \rightarrow Q \times \Gamma_1' \times \Gamma_2' \times \{L, R\} \)
 - \(\Gamma_2 \): tape characters
 - \(\Gamma_1 \): stack characters

- Having a stack is useful to simplify programming by supporting subroutines and recursive operations

- **Solution:** Simulate on a 2-tape machine
 - One tape is original tape
 - 2\(^{nd}\) tape is stack
 - \(\Gamma_1' \) and \(\Gamma_2' \) include duplicates of \(\Gamma_1 \) and \(\Gamma_2 \) i.e. \(a \) and \(a' \)
 where ‘ed symbols represent “top of stack”
 - Any push or pop to stack causes switch to states that modify just stack

- Then emulate 2-tape on single tape
• (p. 178) **NTM: NonDeterministic TMs**
 • \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R,\}) \)
 • Each \((q, a)\) can lead to one of a set of transitions
 • There are multiple choices for each state & tape symbol
 • If *any* of these choices lead to an accept state, then TM accepts its input
• (p. 179) **Theorem 3.16: Every nondeterministic TM N has equivalent deterministic TM D**
 • Solution: have D work thru each possible variation in N’s transitions sequentially
 • In a breadth-first exploration of *tree* of choices
 • Each node in tree is a configuration of N
 • Root node is initial configuration
 • Explore all possible set of choices at level \(k \) before trying any choices at level \(k+1 \)
 • If any choice leads to \(q_{\text{accept}} \), accept
 • If all choices lead to \(q_{\text{reject}} \), reject
 • Looping is still possible
• D has 3 tapes (see Fig. 3.17 on page 179)
 • Tape 1: Input tape – never changed
 • Tape 2: Simulation tape: copy of N’s tape having made one set of choices
 • Tape 3: Keeps track of which node in tree Tape 2 represents
 • Let $b = \text{size of largest set of possible choices from one transition}$
 • $\Gamma_3 = \{1, \ldots, b\}$
 • Eg. 431 on tape 3 means tape 2 represents
 • Having made 4$^{\text{nd}}$ choice at root,
 • Having made 3$^{\text{rd}}$ choice from above
 • Having made 1$^{\text{st}}$ choice from above
 • Computation as follows:
 • Copy tape 1 to 2
 • Initialize tape 3 to ϵ
 • Use Tape 2 to simulate one branch of N’s tree
 • Before each step of N, consult next symbol on tape 3 to determine which choice to make
 • If accepting configuration found, enter accept state
• Replace string on tape 3 with next string in tree ordering and restart if any of following
 • No more symbols on tape 3
 • Simulation ended up “invalid”
 • Choice on tape is invalid
• D clearly computes anything N does but with 3 tapes
 • But a 3-tape TM can be simulated by a 1 tape TM
 • SLOWLY!!!
 • Thus N can be simulated by a basic 1-Tape TM!
• (p. 180) Corollary 3.18. A language is Turing-recognizable if some NTM recognizes it
 • Proof: all NTMs can be converted into a TM
• A NTM is a Decider if all branches halt
 • In proof of Theorem 3.16 we can modify simulation of N so that if N always halts then so does D.
 • Thus Corollary 3.19: L is decidable iff some NTM decides it
• (p. 180) An **Enumerator** of a language L is a TM with
 • A “printer” where each rule can also output a symbol
 • An initial blank “work tape”
 • A set of rules that uses work tape to generate all possible strings from a language
 • And write each string to the printer
• (p. 181) **Theorem 3.21** A language L is Turing-recognizable iff some enumerator can enumerate it.
 • If: assume TM E enumerates L, following TM M accepts it
 • Given a string w, M runs E from start
 • For each string that is output, compare it to w
 • If ever a match, accept it
 • All (and only) w’s from L will be accepted!
 • Only if: Assume TM M accepts L, construct E as follows:
 • Build an enumerator E’ for all strings in ∑*
 • Do the following for i=1, 2,
 • Run E’ to generate next string
 • For each output from E’ run M for exactly i steps
 • Guarantees we will stop
 • If accepted, print out string from E’
 • Equivalent logically to running parallel set of Ms, each running on a different string from ∑*
• **Summary of all this**

 • No computer can compute anything that basic TM cannot
 • With caveat of enough memory
 • Thus all computers compute *exactly* the same class of algorithms

 • Any reasonable programming language can be used to write a TM emulator
 • Thus any reasonable programming language can be compiled into any other reasonable language
 • Thus all programming languages describe *exactly* the same class of algorithms