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pp. 176-176-182. Variants of Turing Machines (Sec. 3.2) 

• Remember: a language is Turing recognizable if some 

TM accepts it. 

• Adding “features” may simplify programmability but 

DO NOT affect what a TM can compute. 

• Anything a “fancy” TM can compute, can be computed 

with a basic TM (perhaps with more complex set of δs.) 

• Option to “stay still” (p. 176) (not move head) 

• δ:QxΓ -> QxΓx {L, R, S} – S means stay still 

• δ(q,a) -> (r,b,S) can be replaced by 2 transitions of 

standard TM 

• δ(q,a) -> (r1,b,R) 

• δ(r1,x) -> (q,x,L) for all x in Γ 

• Thus no TM with “S” option can compute anything not 

computable by basic TM 

• But may be “faster” or easier to program 
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• MultiTape TM (p. 176) 

• Assume M has k tapes: all use same Γ 

• 1st one as in basic machine (i.e. holds initial input) 

• Rest are initially all blank 

• Separate read/write head under each tape 

• That can be moved individually 

• δ: Q x Γk -> Q x Γk x {L,R,S}k  

• δ(q,a1, … ak) = (r, b1, … bk, d1, … dk) means 

• If in state q, and for all 1≤i≤k, tape i has ai under its 

head 

• Then for all I, change ai to bi on tape i 

• And for all I, move tape i in direction di 

• Proof: assume M is a k tape TM (Q,Σ,Γ,δ,qstart,qaccept,qreject). 

Construct equivalent 1-tape TM S 

(Q’,Σ,Γ’,δ’,qstart’,qaccept,qreject) as follows: 

• Assume starting tape is w1…wn  

• Add new characters to Γ’ 

• For each x in Γ, add a new symbol x’ to Γ’ 

• ‘ indicates a tape head is on that cell 

• Include a □’ 

• Add a special symbol # to Γ’ 

• To mark start of a new simulated “tape” 
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• Add new initial states with transitions that do following 

• Insert a # onto left of tape, moving w right one place 

• Replace w1 by w1’ 

• Write k-1 copies of #□’ to end of w 

• Write a final # at end 

• Resulting tape looks like #w1’…wn#□’#□’ … #□’# 

• The ith “#” indicate the start of the ith tape 

• The ith ‘ed symbol indicates the current position of 

the ith tape head 

• (p. 177) Fig. 3.14 diagrams 3-tape example 

• To simulate with S a single transition of M from state q 

• Sequentially try each rule from M that starts with q: 

• Move to the ith ‘ed symbol and compare to ai  

• If we find a mismatch, quit and try next rule 

• If we have match on all ais, go back to start of tape 

and go back to each ‘ed symbol in sequence 

• Replace by bi  

• Move simulated tape head i by moving L, R, or S, 

and replace that symbol by its ‘ed version 

• On a move R where we hit a # 

• 1st move entire rest of string right one position 

• Then write a blank  
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• B: Bidirectional Infinite Tape  

• Tape goes on forever in both directions, not just right 

• First emulate on a 2-tape TM 

• Tape 1 is the right hand side of the double sided tape 

• Tape 2 is the left handed side of the double sided tape 

• Have a special # on start of both sides of tape 

• Two sets of states from B:  

• one where we are on right hand side of B’s tape  

• other where we are on left hand side of B’s tape 

• If in a right-side of tape state and move L, add 

additional states to check if new cell is cell 0 

• This is case where B has crossed the center of its 

tape, moving left 

• If so, switch to correct state on 2nd tape 

• And whenever original state says move left, new 

transition says more right, and vice versa 

• If on 2nd tape, and move right into a cell with a # 

• I.E. have crossed the center of the original tape and 

moving right 

• Move left to cell 0, switch to equivalent state that 

uses 1st tape 

• Then emulate 2-tape machine on a basic TM 
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• S: TM with a Stack 

• δ:QxΓ1x Γ2 -> Qx Γ1’x Γ2’ x {L, R} 

• Γ2: tape characters 

• Γ1: stack characters 

• Having a stack is useful to simplify programming by 

supporting subroutines and recursive operations 

• Solution: Simulate on a 2-tape machine 

• One tape is original tape 

• 2nd tape is stack 

• Γ1’ and Γ2’ include duplicates of Γ1 and Γ2 i.e. a and a’ 

where ‘ed symbols represent “top of stack’ 

• Any push or pop to stack causes switch to states that 

modify just stack 

• Then emulate 2-tape on single tape 
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• (p. 178) NTM: NonDeterministic TMs  

• δ:QxΓ -> P( QxΓx {L, R,} ) 

• Each (q,a) can lead to one of a set of transitions 

• There are multiple choices for each state & tape symbol 

• If any of these choices lead to an accept state, then TM 

accepts its input 

• (p. 179) Theorem 3.16: Every nondeterministic TM N has 

equivalent deterministic TM D   

• Solution: have D work thru each possible variation in 

N’s transitions sequentially 

• In a breadth-first exploration of tree of choices 

• Each node in tree is a configuration of N 

• Root node is initial configuration 

• Explore all possible set of choices at level k before 

trying any choices at level k+1 

• If any choice leads to qaccept, accept 

• If all choices lead to qreject, reject 

• Looping is still possible  

  



7 
 

• D has 3 tapes (see Fig. 3.17 on page 179) 

• Tape 1: Input tape – never changed 

• Tape 2: Simulation tape: copy of N’s tape having 

made one set of choices 

• Tape 3: Keeps track of which node in tree Tape 2 

represents 

• Let b = size of largest set of possible choices from 

one transition 

• Γ3 = {1, …b} 

• Eg. 431 on tape 3 means tape 2 represents 

• Having made 4nd choice at root, 

• Having made 3rd choice from above 

• Having made 1st choice from above 

• Computation as follows: 

• Copy tape 1 to 2 

• Initialize tape 3 to ε 

• Use Tape 2 to simulate one branch of N’s tree 

• Before each step of N, consult next symbol on 

tape 3 to determine which choice to make 

• If accepting configuration found, enter accept 

state 
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• Replace string on tape 3 with next string in tree 

ordering and restart if any of following 

• No more symbols on tape 3 

• Simulation ended up “invalid” 

• Choice on tape is invalid 

• D clearly computes anything N does but with 3 tapes 

• But a 3-tape TM can be simulated by a 1 tape TM 

• SLOWLY!!! 

• Thus N can be simulated by a basic 1-Tape TM! 

• (p. 180) Corollary 3.18. A language is Turing-

recognizable if some NTM recognizes it 

• Proof: all NTMs can be converted into a TM 

• A NTM is a Decider if all branches halt 

• In proof of Theorem 3.16 we can modify simulation of N 

so that if N always halts then so does D. 

• Thus Corollary 3.19: L is decidable iff some NTM decides it 
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• (p. 180) An Enumerator of a language L is a TM with  

• A “printer” where each rule can also output a symbol 

• An initial blank “work tape” 

• A set of rules that uses work tape to generate all 

possible strings from a language  

• And write each string to the printer 

• (p. 181) Theorem 3.21 A language L is Turing-

recognizable iff some enumerator can enumerate it. 

• If: assume TM E enumerates L , following TM M accepts it 

• Given a string w, M runs E from start 

• For each string that is output, compare it to w 

• If ever a match, accept it 

• All (and only) w’s from L will be accepted! 

• Only if: Assume TM M accepts L, construct E as follows: 

• Build an enumerator E’ for all strings in ∑* 

• Do the following for i=1, 2, …. 

• Run E’ to generate next string 

• For each output from E’ run M for exactly i steps 

• Guarantees we will stop 

• If accepted, print out string from E’ 

• Equivalent logically to running parallel set of Ms, each 

running on a different string from ∑* 
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• Summary of all this 
• No computer can compute anything that basic TM cannot 

• With caveat of enough memory 

• Thus all computers compute exactly the same class of 

algorithms 

• Any reasonable programming language can be used to 

write a TM emulator 

• Thus any reasonable programming language can be 

compiled into any other reasonable language 

• Thus all programming languages describe exactly the 

same class of algorithms 


