pp. 176-176-182. Variants of Turing Machines (Sec. 3.2)

- Remember: a language is Turing recognizable if some TM accepts it.
- Adding "features" may simplify programmability but DO NOT affect what a TM can compute.
 - Anything a "fancy" TM can compute, can be computed with a basic TM (perhaps with more complex set of δs.)
- Option to "stay still" (p. 176) (not move head)
 - δ :Qx Γ -> Qx Γ x {L, R, S} S means stay still
 - δ(q,a) -> (r,b,S) can be replaced by 2 transitions of standard TM
 - δ(q,a) -> (r₁,b,R)
 - δ(r₁,x) -> (q,x,L) for all x in Γ
 - Thus no TM with "S" option can compute anything not computable by basic TM
 - But may be "faster" or easier to program

- MultiTape TM (p. 176)
 - Assume M has k tapes: all use same Γ
 - 1st one as in basic machine (i.e. holds initial input)
 - Rest are initially all blank
 - Separate read/write head under each tape
 - That can be moved individually
 - $\delta: Q \ge \Gamma^k \rightarrow Q \ge \Gamma^k \ge \{L, R, S\}^k$
 - $\delta(q,a_1, ..., a_k) = (r, b_1, ..., b_k, d_1, ..., d_k)$ means
 - If in state q, and for all 1≤i≤k, tape i has a_i under its head
 - Then for all I, change a_i to b_i on tape i
 - And for all I, move tape i in direction d_i
 - Proof: assume M is a k tape TM (Q,Σ,Γ,δ,q_{start},q_{accept},q_{reject}).
 Construct equivalent 1-tape TM S
 - $(Q', \Sigma, \Gamma', \delta', q_{start'}, q_{accept}, q_{reject})$ as follows:
 - Assume starting tape is w₁...w_n
 - Add new characters to Γ'
 - For each x in Γ, add a new symbol x' to Γ'
 - ' indicates a tape head is on that cell
 - Include a \Box'
 - Add a special symbol # to Γ'
 - To mark start of a new simulated "tape"

- Add new initial states with transitions that do following
 - Insert a # onto left of tape, moving w right one place
 - Replace w₁ by w₁'
 - Write k-1 copies of $\#\Box'$ to end of w
 - Write a final # at end
 - Resulting tape looks like $\#w_1'...w_n \#\Box' \#\Box' ... \#\Box' \#$
 - The ith "#" indicate the start of the ith tape
 - The ith 'ed symbol indicates the current position of the ith tape head
 - (p. 177) Fig. 3.14 diagrams 3-tape example
- To simulate with S a single transition of M from state q
 - Sequentially try each rule from M that starts with q:
 - Move to the ith 'ed symbol and compare to a_i
 - If we find a mismatch, quit and try next rule
 - If we have match on all a_is, go back to start of tape and go back to each 'ed symbol in sequence
 - Replace by b_i
 - Move simulated tape head i by moving L, R, or S, and replace that symbol by its 'ed version
 - On a move R where we hit a #
 - 1st move entire rest of string right one position
 - Then write a blank

• B: Bidirectional Infinite Tape

- Tape goes on forever in both directions, not just right
- First emulate on a 2-tape TM
 - Tape 1 is the right hand side of the double sided tape
 - Tape 2 is the left handed side of the double sided tape
 - Have a special # on start of both sides of tape
 - Two sets of states from B:
 - one where we are on right hand side of B's tape
 - other where we are on left hand side of B's tape
 - If in a right-side of tape state and move L, add additional states to check if new cell is cell 0
 - This is case where B has crossed the center of its tape, moving left
 - If so, switch to correct state on 2nd tape
 - And whenever original state says move left, new transition says more right, and vice versa
 - If on 2nd tape, and move right into a cell with a #
 - I.E. have crossed the center of the original tape and moving right
 - Move left to cell 0, switch to equivalent state that uses 1st tape
- Then emulate 2-tape machine on a basic TM

• S: TM with a Stack

- δ:QxΓ₁x Γ₂ -> Qx Γ1'x Γ₂' x {L, R}
 - Γ₂: tape characters
 - Γ₁: stack characters
- Having a stack is useful to simplify programming by supporting subroutines and recursive operations
- Solution: Simulate on a 2-tape machine
 - One tape is original tape
 - 2nd tape is stack
 - Γ1' and Γ₂' include duplicates of Γ₁ and Γ₂ i.e. a and a' where 'ed symbols represent "top of stack'
 - Any push or pop to stack causes switch to states that modify just stack
- Then emulate 2-tape on single tape

- (p. 178) NTM: NonDeterministic TMs
 - δ:QxΓ -> P(QxΓx {L, R,})
 - Each (q,a) can lead to one of a set of transitions
 - There are multiple choices for each state & tape symbol
 - If *any* of these choices lead to an accept state, then TM accepts its input
 - (p. 179) Theorem 3.16: Every nondeterministic TM N has equivalent deterministic TM D
 - Solution: have D work thru each possible variation in N's transitions sequentially
 - In a breadth-first exploration of *tree* of choices
 - Each node in tree is a configuration of N
 - Root node is initial configuration
 - Explore all possible set of choices at level k before trying any choices at level k+1
 - If any choice leads to q_{accept}, accept
 - If all choices lead to q_{reject}, reject
 - Looping is still possible

- D has 3 tapes (see Fig. 3.17 on page 179)
 - Tape 1: Input tape never changed
 - Tape 2: Simulation tape: copy of N's tape having made one set of choices
 - Tape 3: Keeps track of which node in tree Tape 2 represents
 - Let b = size of largest set of possible choices from one transition
 - Γ₃ = {1, ...b}
 - Eg. 431 on tape 3 means tape 2 represents
 - Having made 4nd choice at root,
 - Having made 3rd choice from above
 - Having made 1st choice from above
 - Computation as follows:
 - Copy tape 1 to 2
 - Initialize tape 3 to ε
 - Use Tape 2 to simulate one branch of N's tree
 - Before each step of N, consult next symbol on tape 3 to determine which choice to make
 - If accepting configuration found, enter accept state

- Replace string on tape 3 with next string in tree ordering and restart if any of following
 - No more symbols on tape 3
 - Simulation ended up "invalid"
 - Choice on tape is invalid
- D clearly computes anything N does but with 3 tapes
 - But a 3-tape TM can be simulated by a 1 tape TM

• SLOWLY!!!

- Thus N can be simulated by a basic 1-Tape TM!
- (p. 180) Corollary 3.18. A language is Turingrecognizable if some NTM recognizes it
 - Proof: all NTMs can be converted into a TM
- A NTM is a **Decider** if all branches halt
 - In proof of Theorem 3.16 we can modify simulation of N so that if N always halts then so does D.
 - Thus Corollary 3.19: L is decidable iff some NTM decides it

- (p. 180) An Enumerator of a language L is a TM with
 - A "printer" where each rule can also output a symbol
 - An initial blank "work tape"
 - A set of rules that uses work tape to generate all possible strings from a language
 - And write each string to the printer
- (p. 181) **Theorem 3.21** A language L is Turingrecognizable iff some enumerator can enumerate it.
 - If: assume TM E enumerates L , following TM M accepts it
 - Given a string w, M runs E from start
 - For each string that is output, compare it to w
 - If ever a match, accept it
 - All (and only) w's from L will be accepted!
 - Only if: Assume TM M accepts L, construct E as follows:
 - Build an enumerator E' for all strings in Σ^*
 - Do the following for i=1, 2,
 - Run E' to generate next string
 - For each output from E' run M for exactly i steps
 - Guarantees we will stop
 - If accepted, print out string from E'
 - Equivalent logically to running parallel set of Ms, each running on a different string from ∑*

• Summary of all this

- No computer can compute anything that basic TM cannot
 - With caveat of enough memory
 - Thus all computers compute *exactly* the same class of algorithms
- Any reasonable programming language can be used to write a TM emulator
 - Thus any reasonable programming language can be compiled into any other reasonable language
 - Thus all programming languages describe *exactly* the same class of algorithms