
1

pp. 176-176-182. Variants of Turing Machines (Sec. 3.2)

• Remember: a language is Turing recognizable if some

TM accepts it.

• Adding “features” may simplify programmability but

DO NOT affect what a TM can compute.

• Anything a “fancy” TM can compute, can be computed

with a basic TM (perhaps with more complex set of δs.)

• Option to “stay still” (p. 176) (not move head)

• δ:QxΓ -> QxΓx {L, R, S} – S means stay still

• δ(q,a) -> (r,b,S) can be replaced by 2 transitions of

standard TM

• δ(q,a) -> (r1,b,R)

• δ(r1,x) -> (q,x,L) for all x in Γ

• Thus no TM with “S” option can compute anything not

computable by basic TM

• But may be “faster” or easier to program

2

• MultiTape TM (p. 176)

• Assume M has k tapes: all use same Γ

• 1st one as in basic machine (i.e. holds initial input)

• Rest are initially all blank

• Separate read/write head under each tape

• That can be moved individually

• δ: Q x Γk -> Q x Γk x {L,R,S}k

• δ(q,a1, … ak) = (r, b1, … bk, d1, … dk) means

• If in state q, and for all 1≤i≤k, tape i has ai under its

head

• Then for all I, change ai to bi on tape i

• And for all I, move tape i in direction di

• Proof: assume M is a k tape TM (Q,Σ,Γ,δ,qstart,qaccept,qreject).

Construct equivalent 1-tape TM S

(Q’,Σ,Γ’,δ’,qstart’,qaccept,qreject) as follows:

• Assume starting tape is w1…wn

• Add new characters to Γ’

• For each x in Γ, add a new symbol x’ to Γ’

• ‘ indicates a tape head is on that cell

• Include a □’

• Add a special symbol # to Γ’

• To mark start of a new simulated “tape”

3

• Add new initial states with transitions that do following

• Insert a # onto left of tape, moving w right one place

• Replace w1 by w1’

• Write k-1 copies of #□’ to end of w

• Write a final # at end

• Resulting tape looks like #w1’…wn#□’#□’ … #□’#

• The ith “#” indicate the start of the ith tape

• The ith ‘ed symbol indicates the current position of

the ith tape head

• (p. 177) Fig. 3.14 diagrams 3-tape example

• To simulate with S a single transition of M from state q

• Sequentially try each rule from M that starts with q:

• Move to the ith ‘ed symbol and compare to ai

• If we find a mismatch, quit and try next rule

• If we have match on all ais, go back to start of tape

and go back to each ‘ed symbol in sequence

• Replace by bi

• Move simulated tape head i by moving L, R, or S,

and replace that symbol by its ‘ed version

• On a move R where we hit a #

• 1st move entire rest of string right one position

• Then write a blank

4

• B: Bidirectional Infinite Tape

• Tape goes on forever in both directions, not just right

• First emulate on a 2-tape TM

• Tape 1 is the right hand side of the double sided tape

• Tape 2 is the left handed side of the double sided tape

• Have a special # on start of both sides of tape

• Two sets of states from B:

• one where we are on right hand side of B’s tape

• other where we are on left hand side of B’s tape

• If in a right-side of tape state and move L, add

additional states to check if new cell is cell 0

• This is case where B has crossed the center of its

tape, moving left

• If so, switch to correct state on 2nd tape

• And whenever original state says move left, new

transition says more right, and vice versa

• If on 2nd tape, and move right into a cell with a #

• I.E. have crossed the center of the original tape and

moving right

• Move left to cell 0, switch to equivalent state that

uses 1st tape

• Then emulate 2-tape machine on a basic TM

5

• S: TM with a Stack

• δ:QxΓ1x Γ2 -> Qx Γ1’x Γ2’ x {L, R}

• Γ2: tape characters

• Γ1: stack characters

• Having a stack is useful to simplify programming by

supporting subroutines and recursive operations

• Solution: Simulate on a 2-tape machine

• One tape is original tape

• 2nd tape is stack

• Γ1’ and Γ2’ include duplicates of Γ1 and Γ2 i.e. a and a’

where ‘ed symbols represent “top of stack’

• Any push or pop to stack causes switch to states that

modify just stack

• Then emulate 2-tape on single tape

6

• (p. 178) NTM: NonDeterministic TMs

• δ:QxΓ -> P(QxΓx {L, R,})

• Each (q,a) can lead to one of a set of transitions

• There are multiple choices for each state & tape symbol

• If any of these choices lead to an accept state, then TM

accepts its input

• (p. 179) Theorem 3.16: Every nondeterministic TM N has

equivalent deterministic TM D

• Solution: have D work thru each possible variation in

N’s transitions sequentially

• In a breadth-first exploration of tree of choices

• Each node in tree is a configuration of N

• Root node is initial configuration

• Explore all possible set of choices at level k before

trying any choices at level k+1

• If any choice leads to qaccept, accept

• If all choices lead to qreject, reject

• Looping is still possible

7

• D has 3 tapes (see Fig. 3.17 on page 179)

• Tape 1: Input tape – never changed

• Tape 2: Simulation tape: copy of N’s tape having

made one set of choices

• Tape 3: Keeps track of which node in tree Tape 2

represents

• Let b = size of largest set of possible choices from

one transition

• Γ3 = {1, …b}

• Eg. 431 on tape 3 means tape 2 represents

• Having made 4nd choice at root,

• Having made 3rd choice from above

• Having made 1st choice from above

• Computation as follows:

• Copy tape 1 to 2

• Initialize tape 3 to ε

• Use Tape 2 to simulate one branch of N’s tree

• Before each step of N, consult next symbol on

tape 3 to determine which choice to make

• If accepting configuration found, enter accept

state

8

• Replace string on tape 3 with next string in tree

ordering and restart if any of following

• No more symbols on tape 3

• Simulation ended up “invalid”

• Choice on tape is invalid

• D clearly computes anything N does but with 3 tapes

• But a 3-tape TM can be simulated by a 1 tape TM

• SLOWLY!!!

• Thus N can be simulated by a basic 1-Tape TM!

• (p. 180) Corollary 3.18. A language is Turing-

recognizable if some NTM recognizes it

• Proof: all NTMs can be converted into a TM

• A NTM is a Decider if all branches halt

• In proof of Theorem 3.16 we can modify simulation of N

so that if N always halts then so does D.

• Thus Corollary 3.19: L is decidable iff some NTM decides it

9

• (p. 180) An Enumerator of a language L is a TM with

• A “printer” where each rule can also output a symbol

• An initial blank “work tape”

• A set of rules that uses work tape to generate all

possible strings from a language

• And write each string to the printer

• (p. 181) Theorem 3.21 A language L is Turing-

recognizable iff some enumerator can enumerate it.

• If: assume TM E enumerates L , following TM M accepts it

• Given a string w, M runs E from start

• For each string that is output, compare it to w

• If ever a match, accept it

• All (and only) w’s from L will be accepted!

• Only if: Assume TM M accepts L, construct E as follows:

• Build an enumerator E’ for all strings in ∑*

• Do the following for i=1, 2, ….

• Run E’ to generate next string

• For each output from E’ run M for exactly i steps

• Guarantees we will stop

• If accepted, print out string from E’

• Equivalent logically to running parallel set of Ms, each

running on a different string from ∑*

10

• Summary of all this
• No computer can compute anything that basic TM cannot

• With caveat of enough memory

• Thus all computers compute exactly the same class of

algorithms

• Any reasonable programming language can be used to

write a TM emulator

• Thus any reasonable programming language can be

compiled into any other reasonable language

• Thus all programming languages describe exactly the

same class of algorithms

