• (p. 166) Difference from DFA and PDA
 • 1-sided infinite Tape instead of (infinite) stack
 • One symbol fits in a cell
 • Initially input string starts on left edge and extends right
 • 1st blank □ to right of tape marks end of input string
 • Tape cells to right of 1st □ go on forever with more □s
 • Any tape cell can be modified
 • Tape head initially on leftmost symbol on tape
 • Can move head left or right one cell
 • Accept and reject signaled by entering designated states
• (p. 167) Sample TM for \{w#w | w \in \{0,1\}^*\} (non-CFL)
• Formal Definition: \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})}\)
 • \(Q = \) set of states
 • \(\Sigma = \) input alphabet, not including □
 • Characters that make up tape at start
 • \(\Gamma = \) tape alphabet, symbols that can be on tape cell
 • □ in \(\Gamma, \Sigma \) subset of \(\Gamma\)
 • Characters that can be written to tape
 • \(\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}\)
 • Where L & R signal which direction to move tape
 • \(q_0 = \) start state; \(q_{\text{accept}} \) is accept state; \(q_{\text{reject}} \) is reject state
• **Computation:**
 - Input string \(w = w_1, w_2, \ldots, w_n \) on left of tape, followed by \(\square \)s
 - Tape head starts at leftmost cell (i.e. where \(w_1 \) is)
 - Computation step
 - Reads cell under head
 - Combine with current state to determine which transition rule applies (note no \(\varepsilon \)s!)
 - Set state to new value from transition rule
 - Write symbol from rule to cell
 - Move tape head either left or right as specified
 - Cannot move beyond leftmost cell
 - Repeat until accept or reject
 - Possible for machine to loop forever

• **Configuration:**
 - Current state, tape contents, head location
 - Written as \(u \ q \ v \)
 - \(q \) is current state
 - Current tape holds string \(uv \)
 - Tape head is over *leftmost symbol in string* \(v \)
 - Start configuration: \(q_0 \ w \) (\(u \) is empty string)
 - *(p.169) Fig. 3.4 Example configuration*
 - TM that accepts in in Fig. 3.10 p. 173 (discussed later)
• (p. 169) Configuration C1 yields C2 if M can legally go from C1 to C2 in 1 step
 • if $\delta(q_i, b) = (q_j, c, L)$ then $ua q_i bv$ yields $u q_j acv$
 • If tape head at left end ($ua = \varepsilon$), then $q_i bv$ yields $q_j cv$
 • $\delta(q_i, b) = (q_j, c, R)$ then $ua q_i bv$ yields $uac q_j v$
 • If tape head at current rightmost end ($b = \square$),
 • then $ua q_i \square$ yields $uac q_j \square$
 • Note former blank now occupied
 • Accepting configuration $u q_{\text{accept}} v$
 •Rejecting configuration $u q_{\text{reject}} v$
 • Accepting and Rejecting configurations called halting configurations because no further configurations possible
• (p.170) M accepts w if
 • A sequence C1, C2, ... Ck exists
 • C1 = start configuration $q_0 w$
 • Each C_i yields C_{i+1}
 • C_k is accepting configuration: $u q_{\text{accept}} v$
 • Strings u and v are arbitrary
• (p. 170) TMs and Languages
 • L(M) = set of strings accepted by TM M
 • L is **Turing-recognizable** if some TM M accepts it
 • When M started, 3 outcomes: Accept, Reject, Loops
 • M can fail to accept if it enters q_{reject} or loops
 • (p. 170) M is a **decider** is it never loops
 • I.E. always stops, regardless of input string
 • I.e. always ends up in either q_{accept} or q_{reject}
 • (p. 170) L is **Turing-decidable** (or simply **decidable**) if some Turing Machine decides it.

• Examples
 • (p. 171 Ex. 3.7) A = \(\{0^k \mid k=2^n, n \geq 0\} \)
 • Multiple iterations, each cuts # 0s in half
 • (p.173 Ex. 3.9) B = \(\{w#w \mid w \in \{0,1\}^*\} \)
 • (p. 174 Ex. 3.11) C = \(\{a^ib^jc^k \mid ixj=k, i,j,k \geq 1\} \)
 • (p.175 Ex. 3.12} E = \(\{#x_1#x_2# \ldots #x_l \mid \text{no two x’s are equal}\} \)