pp. 165-175. Turing Machines (Sec. 3.1)

- (p. 166) Difference from DFA and PDA
- 1-sided infinite Tape instead of (infinite) stack
- One symbol fits in a cell
- Initially input string starts on left edge and extends right
- $1^{\text {st }}$ blank \square to right of tape marks end of input string
- Tape cells to right of $1^{\text {st }} \square$ go on forever with more \square s
- Any tape cell can be modified
- Tape head initially on leftmost symbol on tape
- Can move head left or right one cell
- Accept and reject signaled by entering designated states
- (p. 167) Sample TM for $\left\{w \# w \mid w\right.$ in $\left.\{0,1\}^{*}\right\}$ (non-CFL)
- Formal Definition: $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right\}$
- $\mathrm{Q}=$ set of states
- $\sum=$ input alphabet, not including \square
- Characters that make up tape at start
- 「= tape alphabet, symbols that can be on tape cell
- \quad in Γ, Σ subset of Γ
- Characters that can be written to tape
- $\delta: ~ Q x \Gamma->~ Q x\lceil x\{L, R\}$
- Where L \& R signal which direction to move tape
- $q_{0}=$ start state; $q_{a c c e p t}$ is accept state; $q_{\text {reject }}$ is reject state
- Computation:
- Input string $w=w_{1}, w_{2}, \ldots w_{n}$ on left of tape, followed by $\square s$
- Tape head starts at leftmost cell (i.e. where w_{1} is)
- Computation step
- Reads cell under head
- Combine with current state to determine which transition rule applys (note no es!)
- Set state to new value from transition rule
- Write symbol from rule to cell
- Move tape head either left or right as specified
- Cannot move beyond leftmost cell
- Repeat until accept or reject
- Possible for machine to loop forever
- Configuration:
- Current state, tape contents, head location
- Written as uqv
- q is current state
- Current tape holds string uv
- Tape head is over leftmost symbol in string v
- Start configuration: $\mathrm{q}_{0} \mathrm{w}$ (u is empty string)
- (p.169) Fig. 3.4 Example configuration
- TM that accepts in in Fig. 3.10 p. 173 (discussed later)
- (p. 169) Configuration C1 yields C2 if M can legally go from C1 to C2 in 1 step
- if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$ then ua q_{i} bv yields $u q_{j} a c v$
- If tape head at left end ($u a=\varepsilon$), then $q_{i} b v$ yields $q_{j} c v$
- $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$ then ua q_{i} bv yields uac $q_{j} v$
- If tape head at current rightmost end $(b=\square)$,
- then ua $q_{i} \square$ yields uac $q_{j} \square$
- Note former blank now occupied
- Accepting configuration $u q_{\text {accept }} \mathrm{V}$
- Rejecting configuration $u q_{\text {reject }} v$
- Accepting and Rejecting configurations called halting configurations because no further configurations possible
- (p.170) M accepts w if
- A sequence C1, C2, ... Ck exists
- $\mathrm{C} 1=$ start configuration $\mathrm{q}_{0} \mathrm{w}$
- Each C_{i} yields $\mathrm{C}_{\mathrm{i}+1}$
- C_{k} is accepting configuration: $u q_{\text {accept }} \mathrm{V}$
- Strings u and v are arbitrary
- (p. 170) TMs and Languages
- $L(M)=$ set of strings accepted by TM M
- L is Turing-recognizable if some TM M accepts it
- When M started, 3 outcomes: Accept, Reject, Loops
- M can fail to accept if it enters qreject or loops
- (p.170) M is a decider is it never loops
- I.E. always stops, regardless of input string
- I.e. always ends up in either $\mathrm{q}_{\text {accept }}$ or qreject
- (p. 170) L is Turing-decidable (or simply decidable) if some Turing Machine decides it.
- Examples
- (p. 171 Ex. 3.7) $A=\left(0^{k} \mid k=2^{n}, n \geq 0\right\}$
- Multiple iterations, each cuts \# Os in half
- (p.173 Ex. 3.9) B = \{w\#w | w in $\left.\{0,1\}^{*}\right\}$
- (p. 174 Ex. 3.11) $C=\left\{a^{i} b^{j} c^{k} \mid i x j=k, i, j, k \geq 1\right\}$
- (p.175 Ex. 3.12\} $E=\left\{\# x_{1} \# x_{2} \#\right.$... $\# x_{1} \mid$ no two x^{\prime} s are equal $\}$

