
1

Topics for Final
• Open books and notes but no electronic aids

• Issues from prior exams/homeworks
• Induction proofs

• Showing closure properties via constructions

• Estimating pumping length

• ε rules in PDAs and equivalence to pushes and pops

• Pumping lemmas

• (p. 176) Chap. 3.2 Variations of TMs
• Multiple variations of TMs are possible

• Add “S(tay)” to Left/Right directions

• Multiple tapes

• Bi-directional infinite tape

• TM with a stack

• Non-Deterministic TM: Transitions lead to a set of (QxΓx{L,R})

• Computations follow a “tree” of possibilities

• If some branch leads to an accept state, NTM accepts

• None of these options lead to any more “capable” machine

• May be faster but cannot compute anything standard TM can

• Approach to proving this

• (Easy) Show new machine can compute anything a 1 tape TM can

• (Tougher) Show 1-tape TM can emulate any program for new machine

• Enumerators: A TM that generates sequentially a set of strings from some
language L in a way that guarantees that any string in L is eventually generated

• (p. 182) Chap. 3.4 Algorithms
• Algorithm: ordered finite set of steps where each step does a finite operation

• Church-Turing Thesis: any algorithm can be expressed as a TM (where any answer
is left on tape)

• Not all problems are solvable by a TM/algorithm

• Example: Hilbert’s 10th problem –integral root for a polynomial.

• Recognizers may exist but not deciders

• (p. 185) Terminology for describing TMs

• Formal Description: all sets, all transitions

• Implementation level: English prose on how the tape is processed by the TM

• High Level: English prose description of algorithm (typically as composition of
other algorithms)

2

• (p. 193) Chap. 4 Decidability
• Language = set of strings

• Machines can be encoded as strings (e.g. machine files for projects)

• (p. 170) Language is Turing-recognizable if some TM recognizes it

• Always accepts if input is in language

• Never accepts if input is not in language

• (p. 170) Language is Turing-decidable if some TM decides it

• Always accepts if input in language

• And always rejects any input not in language – NEVER LOOPS

• TM is a co-Turing recognizer of L if TM recognizes the complement of L

• (p. 194) Acceptance problem = is some specific string in a specific language?

• (p. 194) Decidable language: algorithm exists to always determine yes or no (no
loop)

• Be able to describe algorithm for decision

• Decidable languages based on DFA/NFA (i.e. regular expressions)

• Decidable languages based on PDA (i.e. Context free)

• (p. 201) 4.2: Undecidability: cannot write algorithm to decide

• May be recognizable or co-Turing recognizable, BUT NOT BOTH

• First undecidable language: ATM = {<M,w>|M accepts w}

• Proof by contradiction, Uses idea of diagonalization (do not need to
understand details of p. 203-208 on diagonalization)

• (pp. 220-226) Computational Histories (LBA not covered)

• (p. 209) co-Turing recognizability (complement of a language is recognizable)

• Complement of L = {w|w any string NOT in L}

• L is decidable iff recognizable and co-Turing recognizable

• (p. 215) Chap 5 Reducibility
• Reduction of A to B: transform any instance of Problem A into an instance of

Problem B and use decider/solver for B to give correct answer for instance of A

• (p. 216) 5.1 Undecidable problems from Language Theory

• Be able to prove B is undecidable by showing reduction from problem A (which
is undecidable) to B. If B is decidable then A must also, causing a contradictory

• (p. 237) Post Correspondence Problem is undecidable – understand problem – do
not need to recreate proof

• (p. 234) 5.3 Mapping Reducibility: mapping from A to B is via a function

3

• (p. 275) Chap. 7 Time Complexity
• Determine “Big O” time complexity of a function as function of size of input

• (p. 279) TIME(t(n)) = all languages decidable by O(t(n)) TM

• (p. 282) Every t(n) time multi-tape TM has eqvt O(t(n)2) 1-tape TM

• (p. 283) Running time of NTM = max # of steps in any possible path

• (p. 284) 7.2 Class P: polynomial time deciders
• Show by designing deterministic TM decider in time O(nk) for some k

• (p. 288) PATH = {<G,s,t>| there is a path from s to t}

• (p. 289) RELPRIME = {<x,y>|x and y are relatively prime} Uses Euclidean alg

• (p. 290) Every CFL is in P – uses dynamic programming

• [7.6] Show P closed under union, concatenation, complement

• (p. 292) 7.3 Class NP: a NTM can produce, in poly time, a
“certificate” which can be checked by a polynomial time verifier

• NTM typically generates “all possible” solutions, and passes correct one to
verifier to check.

• Crystal Ball” guesses answer & verifier simply has to check in poly time

• Essentially your brute-force SAT solver

• Equivalent to being able to generate via an enumerator a possibly large but
bounded number of certificates which can be fed to verifier

• If one of these returns “verified” problem is solvable

• NTIME(t(n)) = languages decidable by NTM in O(t(n)) time

• Proof technique:

• Show NTM can generate a “certificate” (a.k.a a guess) in poly time

• Show poly time NTM can verify

• (p. 296) CLIQUE = {<G,k>|G has k vertices with edges to each other}

• (p. 297) SUBSET-SUM = {<S,t>|some subset of S adds up to t}

• SAT = {<wff>|wff is satisfiable}

• (p. 299) 7.4 NP-Complete: Subset of NP problems into which all
other NP problems can be mapped

• If poly time decider exists for any problem in NP-complete, then all of NP is in P

• (p. 304) COOK-LEVIN Theorem: SAT is in NP-Complete because we can build a
giant wff from a NTM and its input, that is satisfiable iff NTM accepts its input

• Do not need to understand how wff is built, only that we can

4

• To add other problems B to NP-complete

• Show poly time mapping from all instances of some A (known to be in NP-
Complete) into an instance of B

• Show if decision for A exists then so does decision for B, & vice versa also

• (p.302) 3SAT is poly time reducible to CLIQUE

• (p. 311) Additional NP-Complete problems (Understand what problems are, not
details of proof)

• (p. 311) CLIQUE because of mapping from 3SAT

• (p. 312) VERTEX-COVER = {<G,k>| some set of k vertices has all edges in G
touching them) via Map from 3SAT

• (p. 314) HAMPATH ={<G,s,t>|G directed graph: path from s to t touches all
vertices once} via map from 3SAT

• (p. 314) UHAMPATH ={<G,s,t>| G undirected}

• (p. 320) SUBSET-SUM = {<S,t>|some subset of S adds up to t}

• Other

• Show NP closed under union, complementation, star

• (V3: 7.34) NP-Hard: from notes – simply remember all NP reduce to it but they are not
in NP

