Topics for Final

• Open books and notes but no electronic aids
• Issues from prior exams/homeworks
 • Induction proofs
 • Showing closure properties via constructions
 • Estimating pumping length
 • ε rules in PDAs and equivalence to pushes and pops
 • Pumping lemmas
• (p. 176) Chap. 3.2 Variations of TMs
 • Multiple variations of TMs are possible
 • Add “S(tay)” to Left/Right directions
 • Multiple tapes
 • Bi-directional infinite tape
 • TM with a stack
 • Non-Deterministic TM: Transitions lead to a set of $(Q \times \Gamma \times \{L,R\})$
 • Computations follow a “tree” of possibilities
 • If some branch leads to an accept state, NTM accepts
 • None of these options lead to any more “capable” machine
 • May be faster but cannot compute anything standard TM can
• Approach to proving this
 • (Easy) Show new machine can compute anything a 1 tape TM can
 • (Tougher) Show 1-tape TM can emulate any program for new machine
• Enumerators: A TM that generates sequentially a set of strings from some language L in a way that guarantees that any string in L is eventually generated
• (p. 182) Chap. 3.4 Algorithms
 • Algorithm: ordered finite set of steps where each step does a finite operation
 • Church-Turing Thesis: any algorithm can be expressed as a TM (where any answer is left on tape)
 • Not all problems are solvable by a TM/algorithm
 • Example: Hilbert’s 10th problem – integral root for a polynomial.
 • Recognizers may exist but not deciders
 • (p. 185) Terminology for describing TMs
 • Formal Description: all sets, all transitions
 • Implementation level: English prose on how the tape is processed by the TM
 • High Level: English prose description of algorithm (typically as composition of other algorithms)
(p. 193) Chap. 4 Decidability

- Language = set of strings
 - Machines can be encoded as strings (e.g. machine files for projects)
- (p. 170) Language is Turing-recognizable if some TM recognizes it
 - Always accepts if input is in language
 - Never accepts if input is not in language
- (p. 170) Language is Turing-decidable if some TM decides it
 - Always accepts if input in language
 - And always rejects any input not in language – NEVER LOOPS
- TM is a co-Turing recognizer of L if TM recognizes the complement of L
- (p. 194) Acceptance problem = is some specific string in a specific language?
- (p. 194) Decidable language: algorithm exists to always determine yes or no (no loop)
 - Be able to describe algorithm for decision
 - Decidable languages based on DFA/NFA (i.e. regular expressions)
 - Decidable languages based on PDA (i.e. Context free)
- (p. 201) 4.2: Undecidability: cannot write algorithm to decide
 - May be recognizable or co-Turing recognizable, BUT NOT BOTH
 - First undecidable language: $A_{TM} = \{<M,w>|M \text{ accepts } w\}$
 - Proof by contradiction, Uses idea of diagonalization (do not need to understand details of p. 203-208 on diagonalization)
- (pp. 220-226) Computational Histories (LBA not covered)
- (p. 209) co-Turing recognizability (complement of a language is recognizable)
 - Complement of L = $\{w|w \text{ any string NOT in } L\}$
 - L is decidable iff recognizable and co-Turing recognizable

(p. 215) Chap 5 Reducibility

- Reduction of A to B: transform any instance of Problem A into an instance of Problem B and use decider/solver for B to give correct answer for instance of A
- (p. 216) 5.1 Undecidable problems from Language Theory
 - Be able to prove B is undecidable by showing reduction from problem A (which is undecidable) to B. If B is decidable then A must also, causing a contradictory
- (p. 237) Post Correspondence Problem is undecidable – understand problem – do not need to recreate proof
- (p. 234) 5.3 Mapping Reducibility: mapping from A to B is via a function
• (p. 275) Chap. 7 Time Complexity
 - Determine “Big O” time complexity of a function as function of size of input
 - (p. 279) \(\text{TIME}(t(n)) \) = all languages decidable by \(O(t(n)) \) TM
 - (p. 282) Every \(t(n) \) time multi-tape TM has eqvt \(O(t(n)^2) \) 1-tape TM
 - (p. 283) Running time of NTM = max # of steps in any possible path

• (p. 284) 7.2 \textbf{Class P}: polynomial time deciders
 - Show by designing deterministic TM decider in time \(O(n^k) \) for some \(k \)
 - (p. 288) \(\text{PATH} = \{<G,s,t>| \text{there is a path from } s \text{ to } t\} \)
 - (p. 289) \(\text{RELPRIME} = \{<x,y>|x \text{ and } y \text{ are relatively prime}\} \) Uses Euclidean alg
 - (p. 290) Every CFL is in \(P \) – uses dynamic programming
 - [7.6] Show P closed under union, concatenation, complement

• (p. 292) 7.3 \textbf{Class NP}: a NTM can produce, in poly time, a “certificate” which can be \textit{checked} by a polynomial time verifier
 - NTM typically generates “all possible” solutions, and passes correct one to verifier to check.
 - Crystal Ball” guesses answer & verifier simply has to check in poly time
 - Essentially your brute-force SAT solver
 - Equivalent to being able to generate via an enumerator a possibly large but bounded number of certificates which can be fed to verifier
 - If one of these returns “verified” problem is solvable
 - \(\text{NTIME}(t(n)) \) = languages decidable by NTM in \(O(t(n)) \) time
 - Proof technique:
 - Show NTM can generate a “certificate” (a.k.a a guess) in poly time
 - Show poly time NTM can verify
 - (p. 296) \(\text{CLIQUE} = \{<G,k>|G \text{ has } k \text{ vertices with edges to each other}\} \)
 - (p. 297) \(\text{SUBSET-SUM} = \{<S,t>|\text{some subset of } S \text{ adds up to } t\} \)
 - \(\text{SAT} = \{<\text{wff}|\text{wff is satisfiable}\} \)

• (p. 299) 7.4 NP-Complete: Subset of NP problems into which all other NP problems can be mapped
 - If poly time decider exists for any problem in NP-complete, then all of NP is in P
 - (p. 304) \text{COOK-LEVIN} Theorem: SAT is in NP-Complete because we can build a giant wff from a NTM and its input, that is satisfiable iff NTM accepts its input
 - Do not need to understand how wff is built, only that we can
• To add other problems B to NP-complete
 • Show poly time mapping from all instances of some A (known to be in NP-Complete) into an instance of B
 • Show if decision for A exists then so does decision for B, & vice versa also
• (p.302) 3SAT is poly time reducible to CLIQUE
• (p. 311) Additional NP-Complete problems (Understand what problems are, not details of proof)
 • (p. 311) CLIQUE because of mapping from 3SAT
 • (p. 312) VERTEX-COVER = \{<G,k>| some set of k vertices has all edges in G touching them\} via Map from 3SAT
• (p. 314) HAMPATH =\{<G,s,t>| G directed graph: path from s to t touches all vertices once\} via map from 3SAT
 • (p. 314) UHAMPATH =\{<G,s,t>| G undirected\}
• (p. 320) SUBSET-SUM = \{<S,t>| some subset of S adds up to t\}
• Other
 • Show NP closed under union, complementation, star
• (V3: 7.34) NP-Hard: from notes – simply remember all NP reduce to it but they are not in NP