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Topics for Final 
• Open books and notes but no electronic aids 

• Issues from prior exams/homeworks 
• Induction proofs 

• Showing closure properties via constructions 

• Estimating pumping length 

• ε rules in PDAs and equivalence to pushes and pops 

• Pumping lemmas 

• (p. 176) Chap. 3.2 Variations of TMs 
• Multiple variations of TMs are possible  

• Add “S(tay)” to Left/Right directions 

• Multiple tapes 

• Bi-directional infinite tape 

• TM with a stack 

• Non-Deterministic TM: Transitions lead to a set of (QxΓx{L,R}) 

• Computations follow a “tree” of possibilities 

• If some branch leads to an accept state, NTM accepts 

• None of these options lead to any more “capable” machine 

• May be faster but cannot compute anything standard TM can 

• Approach to proving this 

• (Easy) Show new machine can compute anything a 1 tape TM can 

• (Tougher) Show 1-tape TM can emulate any program for new machine 

• Enumerators: A TM that generates sequentially a set of strings from some 
language L in a way that guarantees that any string in L is eventually generated 

• (p. 182) Chap. 3.4 Algorithms 
• Algorithm: ordered finite set of steps where each step does a finite operation 

• Church-Turing Thesis: any algorithm can be expressed as a TM (where any answer 
is left on tape) 

• Not all problems are solvable by a TM/algorithm 

• Example: Hilbert’s 10th problem –integral root for a polynomial. 

• Recognizers may exist but not deciders 

• (p. 185) Terminology for describing TMs 

• Formal Description: all sets, all transitions 

• Implementation level: English prose on how the tape is processed by the TM 

• High Level: English prose description of algorithm (typically as composition of 
other algorithms) 
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•  (p. 193) Chap. 4 Decidability 
• Language = set of strings 

• Machines can be encoded as strings (e.g. machine files for projects) 

• (p. 170) Language is Turing-recognizable if some TM recognizes it 

• Always accepts if input is in language 

• Never accepts if input is not in language 

• (p. 170) Language is Turing-decidable if some TM decides it 

• Always accepts if input in language 

• And always rejects any input not in language – NEVER LOOPS 

• TM is a co-Turing recognizer of L if TM recognizes the complement of L 

• (p. 194) Acceptance problem = is some specific string in a specific language? 

• (p. 194) Decidable language: algorithm exists to always determine yes or no (no 
loop)  

• Be able to describe algorithm for decision 

• Decidable languages based on DFA/NFA (i.e. regular expressions) 

• Decidable languages based on PDA (i.e. Context free) 

• (p. 201) 4.2: Undecidability: cannot write algorithm to decide 

• May be recognizable or co-Turing recognizable, BUT NOT BOTH 

• First undecidable language: ATM = {<M,w>|M accepts w} 

• Proof by contradiction, Uses idea of diagonalization (do not need to 
understand details of p. 203-208 on diagonalization) 

• (pp. 220-226) Computational Histories (LBA not covered) 

• (p. 209) co-Turing recognizability (complement of a language is recognizable) 

• Complement of L = {w|w any string NOT in L} 

• L is decidable iff recognizable and co-Turing recognizable 
 

• (p. 215) Chap 5 Reducibility 
• Reduction of A to B: transform any instance of Problem A into an instance of 

Problem B and use decider/solver for B to give correct answer for instance of A 

• (p. 216) 5.1 Undecidable problems from Language Theory 

• Be able to prove B is undecidable by showing reduction from problem A (which 
is undecidable) to B. If B is decidable then A must also, causing a contradictory 

• (p. 237) Post Correspondence Problem is undecidable – understand problem – do 
not need to recreate proof 

• (p. 234) 5.3 Mapping Reducibility: mapping from A to B is via a function 
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• (p. 275) Chap. 7 Time Complexity 
• Determine “Big O” time complexity of a function as function of size of input 

• (p. 279) TIME(t(n)) = all languages decidable by O(t(n)) TM 

• (p. 282) Every t(n) time multi-tape TM has eqvt O(t(n)2) 1-tape TM 

• (p. 283) Running time of NTM = max # of steps in any possible path 

• (p. 284) 7.2 Class P: polynomial time deciders 
• Show by designing deterministic TM decider in time O(nk) for some k 

• (p. 288) PATH = {<G,s,t>| there is a path from s to t} 

• (p. 289) RELPRIME = {<x,y>|x and y are relatively prime} Uses Euclidean alg 

• (p. 290) Every CFL is in P – uses dynamic programming 

• [7.6] Show P closed under union, concatenation, complement 
 

• (p. 292) 7.3 Class NP: a NTM can produce, in poly time, a 
“certificate” which can be checked by a polynomial time verifier 

• NTM typically generates “all possible” solutions, and passes correct one to 
verifier to check. 

• Crystal Ball” guesses answer & verifier simply has to check in poly time 

• Essentially your brute-force SAT solver 

• Equivalent to being able to generate via an enumerator a possibly large but 
bounded number of certificates which can be fed to verifier 

• If one of these returns “verified” problem is solvable 

• NTIME(t(n)) = languages decidable by NTM in O(t(n)) time 

• Proof technique:  

• Show NTM can generate a “certificate” (a.k.a a guess)  in poly time 

• Show poly time NTM can verify 

• (p. 296) CLIQUE = {<G,k>|G has k vertices with edges to each other} 

• (p. 297) SUBSET-SUM = {<S,t>|some subset of S adds up to t} 

• SAT = {<wff>|wff is satisfiable} 
 

• (p. 299) 7.4 NP-Complete: Subset of NP problems into which all 
other NP problems can be mapped 

• If poly time decider exists for any problem in NP-complete, then all of NP is in P 

• (p. 304) COOK-LEVIN Theorem: SAT is in NP-Complete because we can build a 
giant wff from a NTM and its input, that is satisfiable iff NTM accepts its input 

• Do not need to understand how wff is built, only that we can 
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• To add other problems B to NP-complete 

• Show poly time mapping from all instances of some A (known to be in NP-
Complete) into an instance of B 

• Show if decision for A exists then so does decision for B, & vice versa also 

• (p.302) 3SAT is poly time reducible to CLIQUE 

• (p. 311) Additional NP-Complete problems (Understand what problems are, not 
details of proof) 

• (p. 311) CLIQUE because of mapping from 3SAT 

• (p. 312) VERTEX-COVER = {<G,k>| some set of k vertices has all edges in G 
touching them) via Map from 3SAT 

• (p. 314) HAMPATH ={<G,s,t>|G directed graph:  path from s to t touches all 
vertices once} via map from 3SAT 

• (p. 314) UHAMPATH ={<G,s,t>| G undirected} 

• (p. 320) SUBSET-SUM = {<S,t>|some subset of S adds up to t} 

• Other 

• Show NP closed under union, complementation, star 

• (V3: 7.34) NP-Hard: from notes – simply remember all NP reduce to it but they are not 
in NP 


