pp. 201-210. Undecidability (Sec. 4.2)

- Remember $A_{D F A}=\{\langle B, w\rangle \mid B$ a DFA that accepts $w\}$
- We proved it is decidable
- I.e. Given any <B,w> some TM can
- Decide if B accepts w, or not!
- And the TM always halts
- *Consider $A_{T M}=\{<M, w>\mid M$ is a TM and M accepts $w\}$
- If $A_{T M}$ is decidable, then
- we can take $\underline{A N Y}$ program and $\underline{A N Y}$ input,
- and determine yes/no if M accepts w in finite time
- Good for doing automatic program verification
- Question: is this possible?
- KEY: we can write a recognizer U, but not a decider
- U interprets M executing with w (i.e. your TM project)
- If M stops, U stops
- Thus if M accepts w, so does U
- This section: prove we cannot write a TM decider
- Cannot write a TM U that always stops with correct answer when M does not halt
- (p. 202)* Theorem $4.11 \mathrm{~A}_{\text {TM }}$ is undecidable
- First, simpler version of proof than book's
- ASSUME a TM H exists which decides $\mathrm{A}_{\text {т }}$
- Imagine following (large) table
- ith row for all possible machines M_{i}
- Ordered by "size" of <M>
- one column for each possible string w
- Ordered by length of w
- Entry (i,j) has accept or reject in it, depending on what M_{i} does with string w_{j}

	w0	w1	w2	w3	...
M1	reject	accept	reject	accept	
M2	reject	accept	reject	reject	
M3	accept	reject	reject	reject	
M4	rejeet	reject	accept	accept	
\ldots	L...				

- H should be able to compute this, one (M, w) entry at a time, notionally in a "diagonal" order
- If H always stops with accept/reject, then can define D
- D accepts when H rejects and vice versa
- Given $\left\langle\mathrm{M}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}\right.$ >
- Run H on $\left\langle\mathrm{M}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}\right\rangle$
- If H accepts, D rejects and if H rejects then D accepts
- If D is a TM, then it corresponds to some row in table
- i.e. gives accept/reject for each w_{j}
- So H applied to <D, $w_{j}>$ gives what D returns
- BUT D SUPPOSED TO GIVE OPPOSITE OF WHAT H DOES
- So assumption that H exists must be false

	w0	w1	w2	w3	...
M1	reject	accept	reject	accept	
M2	reject	accept	reject	reject	
D	accept	reject	reject	reject	
M4	reject	reject	accept	accept	
\ldots					

- (p. 202) Book's Proof Theorem 4.11 Aтм is undecidable
- Definitions: Assume sets $A \& B, \&$ function $f: A->B$
- f is one-to-one (or injective) if $f(a)!=f(b)$ when $a!=b$.
- f is onto (or surjective) if for all b, there is an a : $f(a)=b$
- fis a correspondences (or bijective) if both
- Equivalent to pairing each a with exactly one b
- (p. 202) Step 1: The diagonalization method
- Discovered by Cantor in 1873 to compare infinite sets
- If there is some correspondence between 2 infinite sets, then they are "same size"
- E.g. $N=\{1,2,3,4, \ldots\} E=\{2,4,6,8, \ldots\}$ are the same size
- For any n in N, pair up with $f(n)=2 n$ in E
- (p. 203) Set A is countable if finite or same size as N
- i.e. each element of A matchable to an integer
- Now consider $Q=\{m / n \mid m, n$ in $N\}$ (Rationals)
- Q seems much larger than N, but not so
- See p. 204 Fig. 4.16 for correspondence with N
- I'th row contains all rationals with i as numerator
- j'th column has all rationals with j as denominator
- Count diagonally
- Skip any i / j that reduces to an earlier \#
- Q has same size as N !
- Uncountable if no correspondence with N
- (p. 205) Theorem 4.17: Reals R is uncountable
- Proof by contradiction
- Suppose bijective function f between N and R
- i.e. can map each integer into a real and v.v.
- Show that such an f always misses at least 1 number x
- Suppose f exists
- Then $f(1)=\ldots, f(2)=$... for some numbers like pi
- Construct an x not in correspondence
- Let $1^{\text {st }}$ digit of x be anything different from $1^{\text {st }}$ digit of fraction of $f(1)$ - thus $x!=f(1)$
- Let $2^{\text {nd }}$ digit of x be anything different from $2^{\text {nd }}$ digit of fraction of $f(2)$ - thus $x!=f(2)$
- ...
- Thus x is different from $f(n)$ for any \mathbf{n} because it differs in nth digit!
- Thus f is not a correspondence
- (p.206) Aside: define B = Infinite Binary Sequences: unending sequence of $0 s \& 1 s$
- B is uncountable using similar proof as for R
- (p. 206) Corollary 4.18 Some languages are not Turing Recognizable
- Proof:
- Set of all TMs is countable
- Each TM has an encoding into finite string <M>
- If we omit all illegal encodings, we get set of all TMs
- Each encoding can be converted into an integer
- Now define $L=$ set of all languages over Σ
- $|\mathrm{L}|$ is infinite - but what about its size?
- Let $\sum^{*}=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}=$ set of strings; \sum is finite
- Question: ${ }^{\dagger}$ s this set countable? Yes
- Each language A in L has a unique binary sequence from $B=$ set of unending sequence of 1 s and 0 s
- ith bit is 1 if s_{i} is in A, and 0 if not
- set of bits called its characteristic sequence
- See page 206 for example
- Function f:L->B where $f(A)$ is its characteristic sequence \& B is set of binary sequences
- Clearly one-to-one and onto
- Thus B and L are same size
- Since B is uncountable, so must L
- Which means there are more languages than TMs!
- (p. 207) Now re-consider $A_{T M}=\{\langle M, w\rangle\}$.
- Assume $\mathrm{A}_{\text {тм }}$ is decidable by TM H
- On input <M,w>
- H halts and accepts <M,w> if M accepts w
- H halts and rejects if M fails to accept w
- Now construct TM D with input <M> as follows
- D calls H to determine what M does given its own description <D> as its input string
- i.e. look at language $\{<\mathrm{M},<\mathrm{M} \gg\}$
- Whatever H does, D does the opposite
- $D=$ "On input $\langle M\rangle$, where M is a TM
- Run H on input <M, <M>>
- Output the opposite of what H does
- Note: <M, <M>> is like a compiler compiling itself
- Thus $\mathrm{D}(<\mathrm{M}>)$
- = accepts if M does not accept <M>
- = rejects if M accepts <M>
- Now run D on <D>:
- $D(<D>)$ accepts if D rejects <D>!
- $D(<D>)$ rejects if D accepts <D>!
- No matter what D does, it must do opposite.
- THUS neither D nor H can exist!
- See Fig. 4.19-4.21 for how diagonalization comes into play
- THUS $\mathrm{A}_{\text {тм }}$ is undecidable! (but it is TM recognizable)
- *Define L is co-Turing-recognizable if it is complement of a Turing-recognizable language
- (p. 209)* Theorem 4.22. A is decidable iff it is both Turing recognizable and co-Turing recognizable.
- =>: if A is decidable then clearly it is both recognizable and co-recognizable
- <=: Construct M from M1 for recognizer and M2 for corecognizer. Then
- Run machines in parallel on same input
- If M1 accepts, accept; if M2 accepts, reject
- Every string is either in A or $\operatorname{not}(\mathrm{A})$
- Thus one machine halts
- Thus M is a decider, and thus A is decidable
- (p. 210) Corollary 4.23 not($A_{T M}$) is not Turing recognizable
- If it were then $\mathrm{A}_{\text {тм }}$ would be decidable
- But $A_{T M}$ is not decidable
- Then $\operatorname{not}\left(\mathrm{A}_{T M}\right)$ cannot be recognizable

