• Remember \(A_{\text{DFA}} = \{<B,w>| B \text{ a DFA that accepts } w\} \)
 • We proved it is decidable
 • I.e. Given any \(<B,w> \) some TM can
 • Decide if \(B \) accepts \(w \), or not!
 • And the TM always halts
• *Consider \(A_{\text{TM}} = \{<M,w>| M \text{ is a TM and } M \text{ accepts } w\} \)
 • If \(A_{\text{TM}} \) is decidable, then
 • we can take \textit{ANY} program and \textit{ANY} input,
 • and determine \textit{yes/no} if \(M \) accepts \(w \) in finite time
 • Good for doing automatic program verification
• Question: is this possible?
• \textbf{KEY}: we can write a recognizer \(U \), \textit{but not a decider}
 • \(U \) interprets \(M \) executing with \(w \) (i.e. your TM project)
 • If \(M \) stops, \(U \) stops
 • Thus if \(M \) accepts \(w \), so does \(U \)
• This section: prove we cannot write a TM decider
 • Cannot write a TM \(U \) that always stops with correct answer when \(M \) does not halt
• (p. 202)* **Theorem 4.11** A_{TM} is undecidable

• First, simpler version of proof than book’s

• **ASSUME** a TM H exists which decides A_{TM}

• Imagine following (large) table

 • ith row for all possible machines M_i

 • Ordered by “size” of $<M>$

 • one column for each possible string w

 • Ordered by length of w

 • Entry (i,j) has accept or reject in it, depending on what M_i does with string w_j

<table>
<thead>
<tr>
<th></th>
<th>w_0</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• H should be able to compute this, one (M,w) entry at a time, notionally in a “diagonal” order
• If H always stops with accept/reject, then can define D
 • D accepts when H rejects and vice versa
 • Given <M_i, w_j>
 • Run H on <M_i, w_j>
 • If H accepts, D rejects and if H rejects then D accepts
 • If D is a TM, then it corresponds to some row in table
 • i.e. gives accept/reject for each w_j
 • So H applied to <D, w_j> gives what D returns
 BUT D SUPPOSED TO GIVE OPPOSITE OF WHAT H DOES
 • So assumption that H exists must be false

<table>
<thead>
<tr>
<th></th>
<th>w0</th>
<th>w1</th>
<th>w2</th>
<th>w3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• (p. 202) Book’s Proof Theorem 4.11 A_{TM} is undecidable
• Definitions: Assume sets A & B, & function $f:A \rightarrow B$
 • f is one-to-one (or injective) if $f(a) \neq f(b)$ when $a \neq b$.
 • f is onto (or surjective) if for all b, there is an a: $f(a)=b$
 • f is a correspondences (or bijective) if both
 • Equivalent to pairing each a with exactly one b
• (p. 202) Step 1: The diagonalization method
 • Discovered by Cantor in 1873 to compare infinite sets
 • If there is some correspondence between 2 infinite sets, then they are “same size”
 • E.g. $N = \{1,2,3,4,...\}$ $E = \{2,4,6,8,...\}$ are the same size
 • For any n in N, pair up with $f(n) = 2n$ in E
• (p. 203) Set A is countable if finite or same size as N
 • i.e. each element of A matchable to an integer
• Now consider $Q = \{m/n \mid m,n \text{ in } N\}$ (Rationals)
 • Q seems much larger than N, but not so
 • See p. 204 Fig. 4.16 for correspondence with N
 • i’th row contains all rationals with i as numerator
 • j’th column has all rationals with j as denominator
 • Count diagonally
 • Skip any i/j that reduces to an earlier #
 • Q has same size as N!
• **Uncountable** if no correspondence with N

• (p. 205) **Theorem 4.17: Reals R is uncountable**

 • Proof by contradiction
 • Suppose bijective function f between N and R
 • i.e. can map each integer into a real and v.v.
 • Show that such an f always misses at least 1 number x
 • Suppose f exists
 • Then f(1) = ..., f(2) = ... for some numbers like π
 • Construct an x not in correspondence
 • Let 1st digit of x be anything different from 1st digit of fraction of f(1) – thus x≠f(1)
 • Let 2nd digit of x be anything different from 2nd digit of fraction of f(2) – thus x≠f(2)
 • ...
 • Thus x is different from f(n) for any n because it differs in nth digit!
 • Thus f is not a correspondence

• (p. 206) **Aside: define B = Infinite Binary Sequences:**
 unending sequence of 0s & 1s
 • B is uncountable using similar proof as for R
(p. 206) Corollary 4.18 Some languages are not Turing Recognizable

Proof:

Set of all TMs is countable
- Each TM has an encoding into finite string <M>
- If we omit all illegal encodings, we get set of all TMs
- Each encoding can be converted into an integer

Now define L = set of all languages over \(\Sigma \)
- \(|L| \) is infinite – but what about its size?
- Let \(\Sigma^* = \{s_1, s_2, s_3, \ldots\} \) = set of strings; \(\Sigma \) is finite
 - Question: is this set countable? Yes
- Each language \(A \) in L has a unique binary sequence from \(B = \) set of unending sequence of 1s and 0s
 - ith bit is 1 if \(s_i \) is in \(A \), and 0 if not
 - set of bits called its characteristic sequence
- See page 206 for example
- Function \(f : L \rightarrow B \) where \(f(A) \) is its characteristic sequence & \(B \) is set of binary sequences
 - Clearly one-to-one and onto
 - Thus \(B \) and \(L \) are same size
- Since \(B \) is uncountable, so must \(L \)

Which means there are more languages than TMs!
• (p. 207) Now re-consider $A_{TM} = \{<M,w>\}$.
 • Assume A_{TM} is decidable by TM H
 • On input $<M,w>$
 • H halts and accepts $<M,w>$ if M accepts w
 • H halts and rejects if M fails to accept w
 • Now construct TM D with input $<M>$ as follows
 • D calls H to determine what M does given its own description $<D>$ as its input string
 • i.e. look at language $\{<M,<M>>\}$
 • Whatever H does, D does the opposite
 • $D = \text{“On input }<M>, \text{ where } M \text{ is a TM}$
 • Run H on input $<M,<M>>$
 • Output the opposite of what H does
 • Note: $<M,<M>>$ is like a compiler compiling itself
 • Thus $D(<M>)$
 • = accepts if M does not accept $<M>$
 • = rejects if M accepts $<M>$
 • Now run D on $<D>$:
 • $D(<D>)$ accepts if D rejects $<D>$!
 • $D(<D>)$ rejects if D accepts $<D>$!
 • No matter what D does, it must do opposite.
 • **THUS neither D nor H can exist!**
• See Fig. 4.19 – 4.21 for how diagonalization comes into play
• THUS A_{TM} is undecidable! (but it is TM recognizable)
• *Define L is **co-Turing-recognizable** if it is complement of a Turing-recognizable language
• (p. 209)* **Theorem 4.22.** A is decidable iff it is both Turing recognizable and co-Turing recognizable.
 • \implies: if A is decidable then clearly it is both recognizable and co-recognizable
 • \impliedby: Construct M from M1 for recognizer and M2 for co-recognizer. Then
 • Run machines in parallel on same input
 • If M1 accepts, accept; if M2 accepts, reject
 • Every string is either in A or not(A)
 • Thus one machine halts
 • Thus M is a decider, and thus A is decidable
• (p. 210) **Corollary 4.23** not(A_{TM}) is not Turing recognizable
 • If it were then A_{TM} would be decidable
 • But A_{TM} is not decidable
 • Then not(A_{TM}) cannot be recognizable