pp. 201-210. Undecidability (Sec. 4.2)

- Remember A_{DFA} = {<B,w>| B a DFA that accepts w}
 - We proved it is decidable
 - I.e. Given any <B,w> some TM can
 - Decide if B accepts w, or not!
 - And the TM always halts
- *Consider A_{TM} = {<M,w>| M is a TM and M accepts w}
 - If A_{TM} is decidable, then
 - we can take <u>ANY</u> program and <u>ANY</u> input,
 - and determine <u>ves/no</u> if M accepts w in finite time
 - Good for doing automatic program verification
- Question: is this possible?
- **KEY**: we can write a *recognizer* U, <u>but not a decider</u>
 - U interprets M executing with w (i.e. your TM project)
 - If M stops, U stops
 - Thus if M accepts w, so does U
- This section: prove we cannot write a TM decider
 - Cannot write a TM U that always stops with correct answer when M does not halt

- (p. 202)* Theorem 4.11 A_{TM} is undecidable
 - First, simpler version of proof than book's
 - ASSUME a TM H exists which decides A_{TM}
 - Imagine following (large) table
 - ith row for all possible machines M_i
 - Ordered by "size" of <M>
 - one column for each possible string w
 - Ordered by length of w
 - Entry (i,j) has accept or reject in it, depending on what M_i does with string w_i

	w0		w1	w2	w3	
M1	reje	ct	accept	reject	accept	
M2	reje	ct	accept	reject	reject	
M3	acce	pt	reject	reject	reject	
M4	reje	et	reject	accept	accept	
		K				

• H should be able to compute this, one (M,w) entry at a time, notionally in a "diagonal" order

- If H always stops with accept/reject, then can define D
 - D accepts when H rejects and vice versa
 - Given $\langle M_i, w_j \rangle$
 - Run H on $\langle M_i, w_j \rangle$
 - If H accepts, D rejects and if H rejects then D accepts
 - If D is a TM, then it corresponds to some row in table
 - i.e. gives accept/reject for each w_j
 - So H applied to <D, w_j> gives what D returns

• BUT D SUPPOSED TO GIVE <u>OPPOSITE</u> OF WHAT H DOES

• So assumption that H exists must be false

	w0	w1	w2	w3	••••
M1	reject	accept	reject	accept	
M2	reject	accept	reject	reject	
D	accept	reject	reject	reject	
M4	reject	reject	accept	accept	

- (p. 202) Book's Proof **Theorem 4.11 A_{TM} is undecidable**
 - Definitions: Assume sets A & B, & function f:A->B
 - f is **one-to-one (or injective)** if f(a) != f(b) when a != b.
 - f is onto (or surjective) if for all b, there is an a: f(a)=b
 - f is a correspondences (or bijective) if both
 - Equivalent to pairing each a with exactly one b
 - (p. 202) Step 1: The diagonalization method
 - Discovered by Cantor in 1873 to compare infinite sets
 - If there is some correspondence between 2 infinite sets, then they are "same size"
 - E.g. N = {1,2,3,4,...} E = {2,4,6,8,...} are the same size
 - For any n in N, pair up with f(n) = 2n in E
 - (p. 203) Set A is **countable** if finite or same size as N
 - i.e. each element of A matchable to an integer
 - Now consider Q = {m/n |m,n in N} (Rationals)
 - Q seems much larger than N, but not so
 - See p. 204 Fig. 4.16 for correspondence with N
 - I'th row contains all rationals with i as numerator
 - j'th column has all rationals with j as denominator
 - Count diagonally
 - Skip any i/j that reduces to an earlier #
 - Q has same size as N!

- Uncountable if no correspondence with N
- (p. 205) Theorem 4.17: Reals R is uncountable
 - Proof by contradiction
 - Suppose bijective function f between N and R
 - i.e. can map each integer into a real and v.v.
 - Show that such an f always misses at least 1 number x
 - Suppose f exists
 - Then f(1) = ..., f(2) = ... for some numbers like pi
 - Construct an x not in correspondence
 - Let 1st digit of x be anything different from 1st digit of fraction of f(1) – thus x!=f(1)
 - Let 2nd digit of x be anything different from 2nd digit of fraction of f(2) – thus x!=f(2)
 - ...
 - Thus x is different from f(n) <u>for any n</u> because it differs in nth digit!
 - Thus f is not a correspondence
 - (p. 206) Aside: define B = Infinite Binary Sequences: <u>unending</u> sequence of 0s & 1s
 - B is uncountable using similar proof as for R

- (p. 206) Corollary 4.18 Some languages are not Turing Recognizable
 - Proof:
 - Set of all TMs is countable
 - Each TM has an encoding into finite string <M>
 - If we omit all illegal encodings, we get set of all TMs
 - Each encoding can be converted into an integer
 - Now define L = set of all languages over Σ
 - |L| is infinite but what about its size?
 - Let $\Sigma^* = \{s_1, s_2, s_3, ...\} =$ set of strings; Σ is finite
 - Question: is this set countable? Yes
 - Each language A in L has a unique **binary sequence** from B = set of unending sequence of 1s and 0s
 - ith bit is 1 if \hat{s}_i is in A, and 0 if not
 - set of bits called its characteristic sequence
 - See page 206 for example
 - Function f:L->B where f(A) is its characteristic sequence & B is set of binary sequences
 - Clearly one-to-one and onto
 - Thus B and L are same size
 - Since B is uncountable, so must L
 - Which means there are more languages than TMs!

- (p. 207) Now re-consider A_{TM} = {<M,w> }.
 - Assume A_{TM} is decidable by TM H
 - On input <M,w>
 - H halts and accepts <M,w> if M accepts w
 - H halts and rejects if M fails to accept w
 - Now construct TM D with input <M> as follows
 - D calls H to determine what M does given <u>its own</u> <u>description</u> <D> as its input string
 - i.e. look at language {<M,<M>>}
 - Whatever H does, D does the opposite
 - D = "On input <M>, where M is a TM
 - Run H on input <M,<M>>
 - Output the opposite of what H does
 - Note: <M,<M>> is like a compiler compiling itself
 - Thus D(<M>)
 - accepts if M does not accept <M>
 - = rejects if M accepts <M>
 - Now run D on <D>:
 - D(<D>) accepts if D rejects <D>!
 - D(<D>) rejects if D accepts <D>!
- No matter what D does, it must do opposite.
- THUS neither D nor H can exist!

- See Fig. 4.19 4.21 for how diagonalization comes into play
- THUS A_{TM} is undecidable! (but it is TM recognizable)
- *Define L is co-Turing-recognizable if it is complement of a Turing-recognizable language
- (p. 209)* Theorem 4.22. A is decidable iff it is both Turing recognizable and co-Turing recognizable.
 - =>: if A is decidable then clearly it is both recognizable and co-recognizable
 - <=: Construct M from M1 for recognizer and M2 for corecognizer. Then
 - Run machines in parallel on same input
 - If M1 accepts, accept; if M2 accepts, reject
 - Every string is either in A or not(A)
 - Thus one machine halts
 - Thus M is a decider, and thus A is decidable
- (p. 210) Corollary 4.23 not(A_™) is not Turing recognizable
 - If it were then A_{TM} would be decidable
 - But A_{TM} is not decidable
 - Then not(A_{TM}) cannot be recognizable