CSE 30151 Theory of Computing

3.4 Regex to NFA
3.5 Student-supplie

4 Documentation
4.1 readme-team
4.2 teamwork-netid

5 Submission

Spring 2018
Project 2-Finite Automata

Version 1
Contents
1 Overview
2 Valid Options
2.1 Project Options
2.2 Platform Options
2.3 Teaming Options
2.4 Overall Combinations
2.5 Programming Optionso
2.6 Honor Code Considerations
3 Program Details
3.1 DFA . . e
3.1.1 DFA Machine Format
3.1.2 DFA Simulation Output
3.1.3 Implementation on Arduino
3.1.4 Instructor-Supplied Test Files
3.2 FST . . e
3.2.1 FST Machine Format
3.2.2 FST Simulation Output
3.2.3 Implementation on an Arduino
3.3 NFA-to-DFA Translator

d Test Cases

[\

=W w NN NN

[’ lNoJBEN BENEEN i oo oo IEG, B, TSN N

© oo o

1 Overview

The goal of this project is to have each student understand at a deep level the functioning
of a finite automaton (FA), how “programs” for such a machine should be written, and
what we mean by “complexity” of such programs when executed on real inputs. This design
should set the stage for later projects on alternative classes of automaton.

This project is designed to give students a relatively wide range of options, both in
what is attempted, the platform on which the project is executed, and how teaming with
other students may be performed. Each option is designed so that each student will have
approximately the same amount of educational experience.

Each team shall adopt a team name that is used as part of all program names, and
referenced in documentation.

2 Valid Options

2.1 Project Options

The project has a spectrum of different options that may be pursued:

e dfa: a deterministic finite automata simulator that is capable of accepting a de-
scription of a DFA and then executing that machine against a set of strings, reporting
back for each whether or not the string was accepted by the machine.

e fst: a finite state transducer that operates just like a DFA but also outputs a
character at each transition that may be used to interact with the outside world. It
should be possible to run an FST simulator as a simple DFA also.

e nfa2dfa: a program that takes a valid description of an NFA | and creates a valid de-
scription of a DFA that accepts exactly the same language. This DFA description shall
be executable on a dfa simulator.

e regex2nfa: a program that takes a regular expression and creates an NFA that accepts
it. The description of an NFA should be compatible with a nfa2dfa program, which
means that it can be translated into a form that can be run on a DFA simulator.

The nfa2dfa and regex2nfa are to be compatible with either a DFA or FST simulator.

2.2 Platform Options

There are two platforms on which this project may be run: totally on a conventional com-
puter such as your laptop or the student machines, an Arduino single board embedded
computer, and/or a mix of Arduino and conventional platforms.

2.3 Teaming Options

There are also two teaming options possible. First is collaborative where the members of
the team may freely share development and coding, submit single sets of code and documen-
tation, and receive a common grade. Second is inter-operable where each student develops
their own code and documentation independently, but may use the programs produced by
other students/teams to prove out their code. An example of the latter might be for a
student who is interested in development of just a regez2nfa module, and uses the nfa2dfa

and dfa from other teams to prove it out. In such cases, each student/team receives an
independent grade based on just their own work and submission.

2.4 Overall Combinations

In a collaborative team, groups of up to three students may work freely together. The
number and mix of programs that must be written depends on the number of students, and
include the following options:
e Single student: any one of the following:
— fst on a conventional computer
— dfa on an Arduino
— nfa2dfa on a conventional computer (Requires an inter-operable agreement with
some other team that has a dfa)
— regez2nfa on a conventional computer (Requires an inter-operable agreement with
some other team that has a dfa and a nfa2dfa)
The rationale for requiring only a simpler DFA rather than an FST when running on
an Arduino is to reflect the need for additional programming on both the host and the
Arduino side to transfer data from host to Arduino, and back.
e T'wo person collaborative teams:
— fst on an Arduino, including designing demo examples that interact with the real
world, providing inputs from physical sensors and driving physical output devices.
The instructor has a wide supply of material for such demonstrations.
— dfa and nfa2dfa on a conventional computer. The nfa2dfa must drive the dfa
simulator.
— nfa2dfa and regez2nfa on a conventional computer. (Requires an inter-operable
agreement with some other team that has a dfa)
e a three person collaborative team is expected to develop all three of fst, nfa2dfa, and
regex2nfa.
Other combinations may also be possible - see the instructor for permission.

2.5 Programming Options

You are free to use C, C++, Python, or even (ideally) the C environment for your Arduino.
On conventional machines, Python in particular has proven in the past as perhaps the most
efficient way to get decent working code (the overall goal). If you use Python, feel free to use
the time, csv, sys, copy, itertools, and pygame modules. Use of any other modules requires
preapproval of the instructor.

Many of the files are defined to be in “’csv” format, a text file format where each line is
a series of text strings separated by commas. The Python csv library is particularly useful
for processing such files. Note that the use of spreadsheets for generating test files is useful,
since there is typically a “save as .csv” option. Note also that it may be that such files are
produced on a Windows machine that adds a carriage return and a linefeed to the end of
each line, versus just a line feed under Linux.

If you use your Arduino, you may use any built-in library. Any other libraries should
be passed by the instructor before use. Also the instructor has a few display units and
quite a few Arduino-compatible sensors and actuators that can be loaned out, along with
documentation on drivers.

2.6 Honor Code Considerations

In any case, all aspects of the ND Honor Code (https://honorcode.nd.edu/the-honor-code/)
and CSE-specific interpretation (http://cse.nd.edu/undergraduates/honor-code). Members
of a team are free to share code within themselves but not with students outside the team.
In an inter-operable arrangement, neither student team can look at or be involved in the
development of the other team’s code, although reporting bugs is permissible. Also in such
an arrangement, failure of one side to complete coding in a timely fashion is not an excuse
for the other side. In no case is any code from outside the class, other that that explicitly
authorized either here or by the instructor, allowed. In particular, this includes code from
prior years’ projects that may have been similar.

3 Program Details

Completion of this project will involve two parts. First is developing each required module.
Doing this involves both programming and algorithm understanding. Second is developing
your own automata, and then using your tools to simulate it and show it does what you
expect.

We are not after world-class performance or beautiful code here, but just some relatively
simple code that is functional and from which you can draw insight. You are free to go
beyond the minimal requirements and produce enhanced code, and if in the instructor’s
view it truly represents valuable extensions, then it will be considered for extra credit (see
Section 77).

3.1 DFA

This program, to be named dfa-team, where team is the name of your team, will simulate a
DFA that is programmed to accept/reject strings depending on if they are members of some
language. It must take two files at input: an input “machine file” defining the DFA to be
simulated (Section 3.1.1), and an input file providing multiple character strings to run one
at a time against the machine.

After reading in the machine file, this program should read the second file one line at a
time. Each line is a character string represents a separate input string for running on the
DFA. Before each string is processed from the second file, the simulated DFA should be
reset to its start state, and all statistics should be cleared. The name of the test file shall
be echoed to stdout. Then the FA should be allowed to run against the next line of text
from the input file. At the end, your program should signal if the string was accepted or
not. Section 3.1.2 defines the output that should be generated during the simulation.

In designing your simulator, you should design in an extra “Trap” state to which any
combination of state and input not defined by the machine file should go. This trap state is
assumed to be part of all designs, and need not be defined in the machine file. It is never in
the set of final states. It is there to both catch errors in machine descriptions and to simplify
the description of DFAs. A DFA designer is of course permitted to define and use their own
trap state.

3.1.1 DFA Machine Format

A file providing the rules for a DFA shall consist of a .csv file where each line provides distinct
information about the DFA as follows:

e Line 1: The “name” of the machine being defined. This should be echoed to stdout

before the rules are echoed.

e Line 2: Y - the alphabet to be used as input: only single ASCII letters are allowed,

comma separated, as in a,b,c,... Any ASCII character other than ~ or “,” is allowed.
The ~ character is reserved to stand for € in transition rules for NFAs.

e Line 3: Left blank (here for compatibility with FST designs)

e Line 4: Q - the names of the states, separated by commas, as in q0, q1, ... There is

no constraint on the length or character set of a state name.

e Line 5: gg -The name of the state that should be considered the start state.

e Line 6: F - A comma separated list of state names that should be marked as accepting

states.

e Line 7 and beyond: ¢ - one transition rule per line, in a comma-separated format:

Initial _State_Name, Input_Symbol, New_State_Name
The Input_Symbol is any symbol from the defined ¥ from line 2, or (when describing
an NFA) optionally a ~ that stands for an e.

This file should be read in by your simulator, and internally processed to whatever rep-
resentation you are using to represent the transition function. As each rule is read in, an
integer “Rule #” should be associated with it, assigned in sequential order. The Rule #,
followed by a “”, and an echo of the rule should be dumped to stdout so that later traces
that reference the rules can be followed.

An acceptable simulator need not do any “check” that a character used in a transition is
in ¥ from line 2; if such a character is used in an input string, a branch to Trap is sufficient.
Likewise, depending on your internal representation for the transition function, Line 3 (Q)
need not be explicitly parsed and used.

Also, if the machine file given to your simulator has multiple transitions from the same
state with the same input symbol (i.e. an NFA transition), you may choose any approach
as to what happens, and you do not need to error check that such transitions are in the file.

Note also that this format was designed to allow interoperability of DFAs and FSTs (see
Section 3.2.1). A dfa simulator when given an FST design will skip both line 3 (the FST
output alphabet), and should ignore any fourth item on a transition line.

3.1.2 DFA Simulation Output

When the simulator is processing an input line from the second file, it should output to
stdout a trace of its execution as follows:
e At the start, the input string being processed, prefixed by “String: ”
e For each transition, the following on a separate line:
Step_number, Rule_Number, Initial _State_Name, Input_Symbol, New_State_Name
e After all transitions have been performed, print either “Accepted” (if the last state was
an accepting state) or “Rejected” (otherwise)
The output should be compatible with a “.csv” form, allowing a redirect to a
so that the output can be read by a spreadsheet program such as Excel.

¢

‘esv’ file

If there is a transition not defined in the machine file, you may assume the state to which
the transition goes is the builtin “Trap” state.

After the last line of strings in the input file has been processed, there should be a final
line output that gives the number of lines processed, the number that were accepted, and
the number rejected (rejection includes ending up in the built-in Trap state). This line will
be used by the grader to check for correct execution of test cases.

3.1.3 Implementation on Arduino

If your DFA is implemented on Arduino, there are several possible variations. The major
one is how the machine file is input into the Arduino and processed by the sketch. Most
likely, the file is actually read in by the host computer, and transferred to the Arduino via
calls using the firmata library. This thus involves writing two programs: the Arduino sketch
and some program in the host (this is why a single person team on Arduino need only do a
DFA and not an FST).

Within this option there are variations on how the parsing and processing of the file is
performed. Doing it on the host means that a variety of libraries, such as Python’s csv
library considerably simplify coding. In contrast, the host side could simply read in the file,
and send to the Arduino.

The second major variation involves how the input string is input. Again, a host program
could read the file, send a line at a time to the Arduino, and then receive the stream of output
text. Alternatively, the Arduino monitor function could be used to type in the string, and
the output could go to the monitor (with an on-board LED representing the DFA being in
an accepting state.

3.1.4 Instructor-Supplied Test Files

Under the Projects tab of the class website https://www3.nd.edu/ kogge/courses/cse30151-
sp18/index.html there is a directory called Project2. Within this directory there are several
test files that can be used with dfa-team:
e Four different machine definition in both .txt and .csv formats: M1, M2, M3, Mystery.
e For the first three machines, sets of strings that should be accepted or rejected by the
associated machines
e For the Mystery machine, a set of strings whose acceptance is unknown

3.2 FST

An FST is a DFA where on each transition, a symbol from a second alphabet I'" is output.
The second option program, to be named fst-team, where team is the name of your team,
will simulate a FST. As with the DFA, it must take two files at input: an input “machine
file” defining the DFA to be simulated, and an input file providing multiple character strings
to run one at a time against the machine. In most cases, we would expect the code for this
program to be a relatively straight-forward modification of that for the DFA.

3.2.1 FST Machine Format

The format for an FST simulator is very similar to that for the DFA (Section 3.1.1):

e Line 1: The “name” of the machine being defined. This should be echoed to stdout
before the rules are echoed.

e Line 2: Y - the alphabet to be used as input: only single ASCII letters are allowed,
comma separated, as in a,b,c,... Any ASCII character other than ~ or “,” is allowed.
The ~ character is reserved to stand for € in transition rules for NFAs.

e Line 3: I' - the alphabet to be used as output. Again this is a comma-separated list,
but may take up one of two forms (implementer choice):

— single ASCII letters, comma separated, as in a,b,c,

— comma-separated list of hexadecimal numbers, as in “0x12”. (This is an option
particularly for Arduinos where the output may be a set of digital devices where
binary codes drive what should happen.)

e Line 4: Q - the names of the states, separated by commas, as in q0, ql, ... There is
no constraint on the length or character set of a state name.

e Line 5: qg -The name of the state that should be considered the start state.

e Line 6: F - A comma separated list of state names that should be marked as accepting
states.

e Line 7 and beyond: 0 - one transition rule per line, in a comma-separated format:
Initial _State_Name, Input_Symbol, New_State_N ame, Output_Symbol
If there is no fourth item in a transition rule, then no output character should be
generated.

The Input_Symbol is from ¥ and Output_Symbol is from I'.

Note that an FST design file given to a DFA simulator will run correctly except that it

will not output any characters.

3.2.2 FST Simulation Output

The output of an FST should be again very similar to that of a DFA (Section 3.1.2), except for
each transition the output character needs to be included. Further, at the end of processing
a string, the output string should be printed.

3.2.3 Implementation on an Arduino

An Arduino implementation of an FST is again very similar to that of a DFA (Section
3.1.3), with the extra requirement as to how to generate and display the output string. In
particular, an Arduino implementation would ideally generate an output that drives discrete
outputs to physical devices. In addition, it could be run in a mode where the input symbols
are physical sensors, push buttons, etc.

3.3 NFA-to-DFA Translator

This program option, to be called nfa2dfa-team, where team is the name of your team,
should read in a machine file in the same format as for the DFA (Section 3.1.1), and produce
an output file that represents a valid DFA version of the original input. It is expected that
this original input file is for an NFA, that is, there may be either multiple transitions from
the same state and same input symbol, and/or transitions with € as the character. The
output of your translator should be totally compatible with a DFA simulator as discussed
ion Section 3.1, and should be demonstrated by running the output with appropriate test

strings on that DFA simulator. The algorithm behind this program should resemble that of
the book’s Theorem 1.39.

In the same directory as the DFA test files (see Section 3.1.4), there are several NFA files
that should be used as test files. After translation, these files should be run through the
DFA to demonstrate their correctness.

Also as with the DFA, each student in a collaborative team should generate their own
NFA test machine and test strings, and verify that the output is correct.

Given the nature of this program, it may be most efficient to write it to run on your host,
and not your Arduino. Certainly, however, if you have an Arduino DFA, the output of this
program should be a file that drives it directly.

3.4 Regex to NFA

The final program option, to be named regex2nfa-team, where team is the name of your
team, takes a string representing a regular expression, and using Lemma 1.55 from the book
to construct an NFA. The output of this tool should be compatible with the nfa2dfa tool,
which in turn should then run on a DFA simulator. All three programs then gives us the
capability of writing a regular expression and then getting out a DFA which accepts it.

For test programs, each student in the team shall develop a different regular expression,
and verify that the output is correct.

Given the nature of this program, it may be most efficient to write it for your host, and
not your Arduino. Certainly, however, if you have an Arduino DFA, the output of this
program should be a file that feeds an nfa2dfa program which in turn drives the Arduino.

3.5 Student-supplied Test Cases

In addition to instructor-supplied DFA and NFA machines and test program, each individual
student shall create their own non-trivial test case for the “highest” program written by their
team. For example a one-person team who builds a dfa or fst must design at least one new
DFA or FST. A two-person group that develops a nfa2dfa must then have each student
develop their own NFA and show that it runs correctly through both programs. For a three-
person team, each person must develop a separate non-trivial regex and show that it has
been translated correctly through all three tools. These test cases should be included with
the main code, and documented in each student’s teamwork report (Section 4.2). The name
field of each machine should thus include the netid of the student doing the design.

4 Documentation

Two pieces of documentation, both in PDF format, are required. One (entitled readme-
team.pdf is submitted once by the entire team in the Sakai directory associated by one of
the team members; the other teamwork-netid.pdf is submitted separately by each member
of the team in their own directory

4.1 readme-team

A key part of what your teams submit is a readme-team.pdf that includes the following
in this order:

1. The members of the team.

2. Approximately how much time was spent in total on the project, and how much by
each student.

3. A description of how you managed the code development and testing. Use of github in
particular is a particularly strong suggestion to simplifying this process, as is some sort
of organized code review.

4. The language you used, and a list of libraries you invoked. For Arduinos, using the
online IDE allows you to save your code to the cloud, and then if there is a common
signin, all team members can work with it.

5. A description of the key data structures you used, especially for the internal represen-
tation of states and the state machines and the transitions.

6. Observations made during the project. For example, if an nfa2dfa was written, a
discussion of what you observed in expansion of machine description complexity from
NFA to DFA.

7. If you did any extra programs, or attempted any extra test cases, describe them sepa-
rately.

Only one member of the team need submit this report to their Sakai directory.

4.2 teamwork-netid

In addition, each team member should prepare a brief discussion of their own personal view
of the team dynamics, and stored in a PDF called teamwork-netid.pdf, where netid is
your netid. The contents should include:

1. Who were the other team members.

Under whose netid is the readme-team.pdf, code, and other material saved.
How much time did you personally spend on the project, and what did you do?
Which machines did you design and how did you generate test strings?
What did you personally learn from the project, both about the topic, above program-
ming and code development techniques, and about algorithms.
6. In your own words, how did the team dynamics work? What could be improved? (e.g.
did you use github and if so did it help, did you meet frequently enough, etc.)

7. From your own perspective, what was the role of each team member, and did any

member exceed expectations, or vice versa.

Each student’s submission here should be in their own words and SHOULD NOT be a
copy of any other team members submission, nor should they be shared with the other team
members. These reports will be kept private by the graders and instructor, and will be used
to ensure healthy team dynamics. The instructor retains the right to adjust the score of
an individual team member from the base score (both up and down) on the basis of these
reports. Also, a composite of all such reports from all projects will be used to create an
overall “lessons learned” at the end of the project in what techniques seemed to work better,
and where problems arose. These hopefully will be of use for the next project.

G L

5 Submission

e Each team member should have in their own Sakai directory for this course a directory
called Project2, where all submissions should go.

e When the team is ready to submit, one (and only one) team member will place copies
of all code at output in the designated common directory.

— Your non-Arduino code should be runnable on any of the studentnn.cse.nd.edu
machines so that if there is an issue the graders can run the code themselves.

— If you wrote in a compiled language like C++, include all needed source files (ex-
cepting standard libraries), a make file, and a compiled executable. The source
code is there to allow the graders to look at the code for comments and to resolve
any discrepancies that may arise in looking at your results.

— If you wrote in a language like Python make sure your code is compatible with one
of the versions supported on the studentnn.cse.nd.edu machines, again to allow the
graders to check something if there is an issue.

— If you developed code for an Arduino, include all sketches.

e Also in the same directory as the code the team should place an output file for each of
the test files that you ran. The format should be as described in Section 3.1.2, and the
name should be the same name as the test file but with a “.csv”

In addition, every team member should include in their own Project2 Sakai directory a

copy of their readme-team file, again in pdf.

For the team members who did not upload code and readme’s

e Machine and test files for the designs that the student did themselves.

e The output files from running the above machine files against the developed test files.

e A short readme describing what the machines are, what language they were supposed
to accept, and whether or not the test set showed proper operation.

10

