$\qquad$ Answers $\qquad$
Read "The History of the 4004" by Faggin, F.; Hoff, M.E., Jr.; Mazor, S.; Shima, M.; IEEE Micro Volume: 16 Issue: 6 , Dec 1996 Page(s): $10-20$, and answer in the space provided the following Questions:

1. What was the original purpose for building the 4004 ? calculator
2. What was the size of a single data word in bits? $\qquad$ 4
3. Consider a 4004 system as pictured on page 11 . How many types of chips were needed
$\qquad$ ? How many total chips were used? __ $1 \times 4004+16 \times 4001+16 * 4002+3 \times 4003=36 \_$also 23 was acceptable__
4. What was the maximum RAM (in bits) __1,280x4=5120 $\times 2$ $\qquad$ and ROM (in bits)
$\qquad$ 32 K bits x2 $\qquad$ could it support?
5. What kind of memory was used in "conventional" calculators of the day and why did the 4004 designers decide on a different style? shift registers. 4004 used DRAM because it could be used in arbitrary amounts and took less area.
6. What was the clock frequency either $1 / 1.35 \mathrm{us}=740 \mathrm{KHz}$ or 1 MHz ?
7. How many cycles did most instructions take (CPI) _8 $\qquad$ ?
8. Given the above numbers about how many instructions per second could the chip execute? 1/ 8 cycles $* 1.35$ us $=92.6 \mathrm{Kips}$ or $1 / 8 \times 1$ us $=125 \mathrm{Kips}$
9. List all the registers that the 4004 programmer could "see" or manipulate. PC, A, 16 Index Regs, stack, carry flag
10. How many transistors were on the 4004 , what was the area of the 4004 chip, and thus how many transistors per square mm were implemented? 2,300 transistors in $12 \mathrm{sq}, \mathrm{mm}$ for 192 transistors/sq. mm
11. What chip followed the 4004 and how did it differ? 8008 had 8 bit register, could reach more memory, but took more support chips
12. Show in hexadecimal (with "English" annotations) a 4004 program to add 3 to the contents of register 5 and store the result in memory location 8 .
Several solutions possible
D0 LDM 0 / load a 0 into acc - upper part of address
B0 XCH 0 / exchange acc \& reg 0
D8 LDM 8 / load an 8 into acc
B1 SCH 1 / exchange acc and reg 1
21 SRC 0 / send register pair 000 to memory as address (an 8)
F0 CLC /clear the carry flag
D3 LDM 3 / load a 3 into the accumulator
85 ADD 5 / add register 5 to accumulator with carry
E0 WRM / write accumulator to previously selected RAM
