Redo Electric Tutorial for

\[\text{not}(A \times \text{XOR} B) = A\overline{B} + \overline{A}B \]

Look for

XOR Layout 15
INV Layout 10
Composition 10

Needed: Both Circuit & Layout Views

Common problems:
- Obvious design rule violations
- Missing vias
- Missing well biases
- Mismatched heights
- Combined wells
 - Should have
 - I did not worry about transistor sizes

Missing circuit views:
- A & B tied to 60th INV & XOR
1.16 a, b, c \(F = \text{not}((A+B)C) \)

(c) \(4 \times 6 \) tracks = \(32 \lambda \times 48 \lambda = 1536 \lambda^2 \).

You don’t need to add an extra vertical track between the 3rd and 4th because the metal lines in central area is separated vertically.
1.20 $G = G_3 + P_3(G_2 + P_2[G_1 + P_1 \times G_0])$

(c) The area of this stick diagram is 11×6 tracks $= 66 \times \lambda^2$ if the polysilicon can be bent.

Note that there are several breaks in the book’s solution above in diffusion, so that there are two contacts between poly. I see 13 vertical tracks (Note the cases where there are 2 contact between 2 polys; book’s solution suggests that bending the poly can cause two of the track “disappears.”

Aside: An alternative N-path exists: Start at top of P1,G0,G1,P2,G2,G3,P3 Matching P-path: P1,G0,G1,P2 but then can’t get back to G2!

Does an “Euler Path” exist? No. Assume each transistor is a “bridge”/edge (7 of them) and electrical nets are land masses/vertices. (6 of them), with some odd degree vertices. Thus you need a break (in p btw P3 and G3)
9 vertical tracks (note 2 between P3 and G3)
8 horizontal tracks (if add Y contact)