Introduction to
 CMOS VLSI
 Design

Circuits Lecture C

Peter Kogge
University of Notre Dame Fall 2015

Based on material from
Prof. Jay Brockman, Joseph Nahas: University of Notre Dame
Prof. David Harris, Harvey Mudd College http://www.cmosvlsi.com/coursematerials.html

Outline: Circuits

\square Lecture A

- Physics, EE 101
- Semiconductors
- CMOS Transistors
- Lecture B
- NMOS Logic
- CMOS Inverter and NAND Gate Operation
- CMOS Gate Design
- Adders
- Multipliers
- Lecture C
- Transmission Gates
- Tri-states
- Multiplexors
- Latches
- FlipFlops
- Barrel Shifters

Transmission Gates

Pass Transistors

Transistors can be used as switches in wire
$s \stackrel{g}{\stackrel{\perp}{\leftrightharpoons}} d$
$g=0$
$s \rightarrow 0-d$
$g=1$
$s \rightarrow 0 \rightarrow d$
Input $\mathrm{g}=1$ Output
$\mathrm{g}=1$
$1 \rightarrow-$ degraded 1
$s \stackrel{g}{\stackrel{l}{\leftrightharpoons} d}$

$$
\begin{gathered}
g=0 \\
s \rightarrow 0 \rightarrow d \\
g=1 \\
s_{-O}^{\longrightarrow} \nabla_{0-} d
\end{gathered}
$$

Input $\mathrm{g}=0$ Output
$0 \longrightarrow 0$ degraded 0
$g=0$
$\rightarrow 0$ strong 1

Transmission Gates

- Individual pass transistors produce degraded outputs
- But what if we parallel a p and n type?
- Transmission gates pass both 0 and 1 well Input

Output
$\underset{\substack{\frac{g}{\square} \\ g b}}{\substack{\text { g }}} \mathrm{b}$

$$
\begin{aligned}
& g=0, g b=1 \\
& a-b-b \\
& g=1, g b=0 \\
& a \rightarrow b
\end{aligned}
$$

$$
g=1, g b=0
$$

$$
0 \rightarrow \infty-\text { strong } 0
$$

$$
\mathrm{g}=1, \mathrm{gb}=0
$$

$1 \rightarrow \rightarrow$ strong 1
$\underset{a}{\frac{g}{4}} \mathrm{~b}$
gb

Circuits-C

Combining Transmission Gates

Combining Transmission Gates

Tri-state Logic

Tri-states

- Tri-state buffer produces indeterminant output Z when not enabled
- Z - neither hi nor low - no current low in either direction

EN	A	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Nonrestoring Tri-state via
 Transmission Gate

\square Transmission gate acts as Tri-state buffer

- Only two transistors
- But nonrestoring
- Noise on A is passed on to Y

Tri-state Inverter

\square Tri-state inverter produces restored output

- Violates conduction complement rule
- Because we want a Z output

Multiplexors

Multiplexers

2:1 multiplexer chooses between two inputs

S	$D 1$	D0	Y
0	X	0	
0	X	1	
1	0	X	
1	1	X	

Multiplexers

2:1 multiplexer chooses between two inputs

S	D1	D0	Y
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

Multiplexers

4:1 multiplexer chooses between four inputs
\square Uses 2 Control signals

S1,S0	Y
00	
01	
10	
11	

Logic Gate-Level Mux Design

- $Y=S D_{1}+\bar{S} D_{0}$ (too many transistors)
\square How many transistors are needed?

Gate-Level Mux Design

- $Y=S D_{1}+\bar{S} D_{0}$ (too many transistors)
- How many transistors are needed? 20

Transmission Gate Mux

Nonrestoring mux uses two transmission gates

- Only 4 transistors

Inverting Mux

- Inverting multiplexer
- Use compound AOI22
- Or pair of Tri-state inverters
- Essentially the same thing
\square Noninverting multiplexer adds an inverter

4:1 Multiplexer

3 2input Muxs

4 Tri-states

8 Transmission
Gates

Barrel Shifters

Shifter

- Given N-bit number, often want to shift bits in sequence
- Left or right
- Circular, or fill with 0, or "arithmetic"
\square Equivalent to multiplying/dividing by power of 2
Options on what gets "shifted in"
Eg: shift "95" by 3 right

wxy10010101
00010010 (0-fill or "logical")
10110010 (circular)
11110010 (arithmetic)

Barrel Shifter

\square Assume want to shift left by $k, 0 \leq k \leq N-1\left(N=2^{n}\right)$
$\square k$ espressible as n-bit number:
$-k=k_{n-1} 2^{n-1}+k_{n-1} 2^{n-2}+\ldots k_{1} 2+k_{0}, k_{i} a 0$ or 1
\square Barrel Shifter: construct from \mathbf{n} levels of N 2 -in multiplexors

- When level i either shifts last level by $\mathbf{2}^{\mathrm{i}-1}$ or pass unchanged
"Fill" Bits

Basic Latches

see https://en.wikipedia.org/wiki/Flip-flop_\(electronics\)

D Latch

- When CLK $=1$, latch is transparent - D flows through to Q like a buffer
- When CLK $=0$, the latch is opaque
$-Q$ holds its old value independent of D
\square a.k.a. transparent latch or level-sensitive latch

D Latch Design

Multiplexer chooses D or old Q

D Latch Operation

Set-Reset Latch

SR Latch (Set-Reset)		
S	R	Action
0	0	No Change
0	1	Q $=0$
1	0	Q $=1$
1	1	Invalid

Note: its common to use negation of $S \& R$ as control inputs

Gated Set-Reset Latch

When E is high, acts like prior latch When E is low, no change in output

- Uses constant 2 gate delays
- Needs only 1 input (not inverted)
- Can merge more complex logic functions into latch
- Hazard free
- Used in IBM 360/Mod 91 pipeline

Clocked Latches: Flip-Flops

see https://en.wikipedia.org/wiki/Flip-flop_\(electronics\)

Clocked Latches: D Flip-flop

\square When CLK rises, \mathbf{D} is copied to \mathbf{Q}
\square At all other times, \mathbf{Q} holds its value
\square a.k.a. positive edge-triggered flip-flop, masterslave flip-flop

D Flip-flop Design

Built from master and slave D latches

Circuits-C
CMOS VLSI Design

D Flip-flop Operation

Race Condition

Back-to-back flops can malfunction from clock skew

- Second flip-flop fires late
- Sees first flip-flop change and captures its result
- Called hold-time failure or race condition

Nonoverlapping Clocks

\square Nonoverlapping clocks can prevent races

- As long as nonoverlap exceeds clock skew
\square We will use them in this class for safe design
- Industry manages skew more carefully instead

Set-Reset Latch

SR Latch (Set-Reset)		
S	R	Action
0	0	Invalid
0	1	Q = 0
1	0	$Q=1$
1	1	No Change

If T is held high, output switches from 0 to 1 at $1 / 2$ the rate of the Clock
I.E. "Divide by 2"

