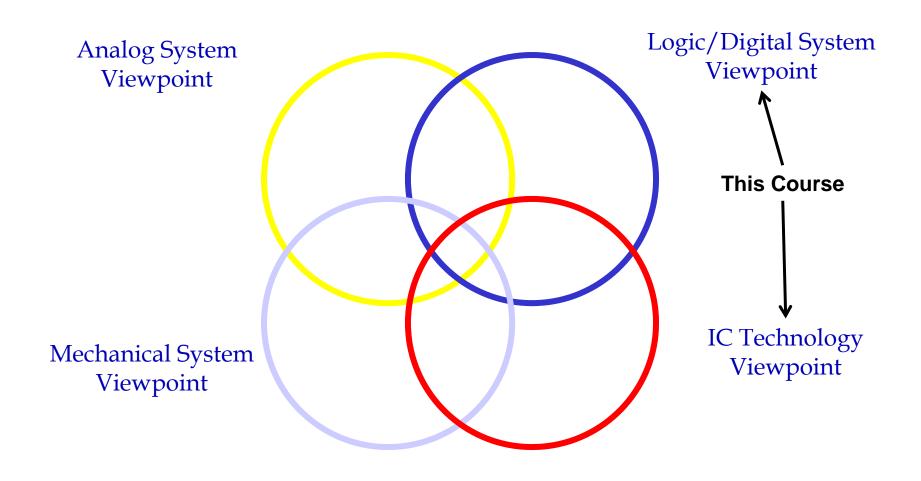
Introduction to CMOS VLSI Design

Course Organization


Peter Kogge University of Notre Dame Fall 2015,2018

Based on prior material from
Profs. Jay Brockman, Joseph Nahas, University of Notre Dame
And Prof. David Harris, Harvey Mudd College
http://www.cmosvlsi.com/coursematerials.html

The Course

- ☐ Goals
 - design basic digital CMOS circuits,
 - estimate and predict key system characteristics such as area,
 speed, and power as a function of technology,
 - understand various design methodologies that incorporate such circuits into bigger digital systems.
- ☐ Major Topics
 - Basic CMOS circuits
 - MOSFET Characteristics
 - Design Rules and Fabrication
 - Scaling (i.e. Moore's Law)
 - Basic Logic/Memory Block design
 - Delay & Logic Effort
 - Power
- Emphasis on digital, not analog, design

System Perspectives

Administration:

- □ 2 Exams (15% each) + Final (15%)
 − All open book
 - Each exam focuses on
 - New material since last
 - 1 or 2 questions from prior exam where there were widespread problems
- ☐ Homework: 30%
- □ Occasional pop quizzes (5%)
 - Scored in class to id student progress
 - Full credit for attendance
 - Each student gets 1 free skip
- Presentation on analysis of early microprocessor chip (10%)
- □ Presentation on alternative technology (10%)

Early Microprocessor Project

- □ Goals
 - Understand an early simple microprocessor
 - Estimate how many and where transistors are used in its microarchitecture
 - Project what versions in newer technologies might have looked like
- Sample microprocessors: see class website for references

Microprocessor	Data Width (bits)	
4004	4	
6502	8	
1802	8	
8080	8	
PDP-8	12	
NOVA	16	
MIPS	32	

Presentation Format

- 20 minutes + 5 minutes for questions in class
- All students expected to evaluate all other presentations
- Expected Presentation Outline
 - Original microprocessor characteristics
 - Technology, speed, power, area, transistor count, ...
 - Overview of instruction set
 - Overview of microarchitecture and how data flows
 - Outline major blocks (and estimate area)
 - Transistor estimate for each
 - Where appropriate show transistor diagrams of block
 - Project ahead to smaller feature sizes
 - Estimate area, power, speed, ...
 - Do projection in 2 steps
 - Using Dennard scaling (until 2004 technology)
 - Using constant voltage scaling

Advanced Technology Project

- Goal: Describe some non-CMOS technology
- ☐ 1 student per technology: Nov. 13-15
- All students expected to evaluate all other presentations
- Expected Presentation Outline (20 min + 5 min Q&A)
 - Description of the functioning of a basic device
 - Description of how basic circuits would be constructed using this device
 - Comparison to CMOS in whatever parameters are most meaningful
 - Description of how the technology could scale in the future
 - Key references

	Date		Topic	W&H
1	8/21/18	Tu	Intro	
2	8/23/18	Th	CMOS A: Devices	1.1-1.4
3	8/28/18	Tu	CMOS B: basic blocks	1.4,11.2, 11.8-11.9
4	8/30/18	Th	CMOS C: T-gates, latches	1.4.6,10.3
5	9/4/18	Tu	Memory A	12.1-12.2
6	9/6/18	Th	Programmable Logic	12.7, 14.3.2
7	9/11/18	Tu	Design (&Verilog)	1.8-1.9
8	9/13/18	Th	Standard Cells & Stick Figures	1.5,1.8-1.10
9	9/18/18	Tu	Design Rules	1.5-1.6, 3.3
10	9/20/18	Th	Scaling & Moore's Law	7.4
11	9/25/18	Tu	Review	
12	9/27/18	Th	Exam 1	
13	10/2/18	Tu	Basic MOSFET Fab	1.5-1.6, 3.x
14	10/4/18	Th	MOSFETs Ideal	2.1-2.3
15	10/9/18	Tu	Load Lines	
16	10/11/18	Th	MOSFETs Real World	2.4
	10/16/18	Tu	Fall Break	
	10/18/18	Th	Fall Break	
17	10/23/18	Tu	Delay A	4.1-4.3
18	10/25/18	Th	Delay B	4.1-4.4
19	10/30/18	Tu	Review	
20	11/1/18	Th	Exam 2	
21	11/6/18	Tu	Logical Effort A	4.5
22	11/8/18	Th	Logical Effort B	4.5
23	11/13/18	Tu	Grad Presentations	
	11/15/18		Grad Presentations	
25	11/20/18	Tu	Logical Effort C	4.5
	11/22/18	Th	Thanksgiving	
26	11/27/18	Tu	Memory B	12.3-12.4
27	11/29/18	Th	Early Microprocessor Review	
28	12/4/18	Tu	Early Microprocessor Review	
29	12/6/18	Th	Final Review	