

Approximating Output Resistance (4.3.7)

	RC values	
Capacitance		Question: Why?
 C ≈ C_g ≈ Values si length. 	$C_{sb} \approx C_{db} \approx 2 \text{ fF}/\mu \text{m}$ of gate width imilar across many processes for	n r minimal gate
□ Resistance $- I_{Dsat} \approx 550$ $- V_{DD} \propto \lambda$ $- R_{eq} \approx 0.74$ $- R_{eq} \approx 7 K$ $- R_{eq} \approx 2 K$	0 μΑ/μm 5 V _{DD} /I _{dsat} $\propto \lambda$ Ω [*] μm in 0.6 μm process Ω [*] μm in 90 nm process	V _{DD} 0.6 μm: 5 V 0.35 μm: 3.3 V 0.25 μm: 2.5 V 0.18 μm: 1.8 V 130 nm: 1.5 V 90 nm: 1.2 V
 Unit transisto May reference Or maybe Doesn't reference 	ors r to minimum contacted device (4 e 1 μm wide device natter as long as you are consist	4/2 λ) ent
Delay A	CMOS VLSI Design	Slide 32

