Introduction to CMOS VLSI Design Delay Part B

Lecture by Jay Brockman
University of Notre Dame Fall 2008
Modified by Peter Kogge Fall 2010,2011,2015, 2018
Based on lecture slides by David Harris, Harvey Mudd College http://www.cmosvlsi.com/coursematerials.html

Outline

\square Delay Part A

- Capacitance
- Effective Resistance
- RC Delay
\square Delay Part B
- Review
- Inverter Delay
- The Elmore Model
- Effect of Load Capacitance

Capacitance

\square Conductors separated by insulator have capacitance
\square Gate to channel capacitor is very important

- Creates channel charge necessary for operation
- Source and drain have capacitance to body
- Across reverse-biased diodes
- Called diffusion capacitance because it is associated with source/drain diffusion

Gate Capacitance

\square Approximate channel as "connected to source"

- $\boldsymbol{C}_{g s}=\varepsilon_{o \mathrm{ox}} \mathrm{WL} / \mathrm{t}_{\mathrm{ox}}=\mathrm{C}_{\mathrm{ox}} \mathrm{WL}=\mathrm{C}_{\text {permicron }} \mathrm{W}$
- proportional to "width" ONLY
- $C_{\text {permicron }}=\varepsilon_{o \mathrm{ox}}\left(\mathrm{L} / \mathrm{t}_{\mathrm{ox}}\right)$ typically $\sim 2 \mathrm{fF} / \mu \mathrm{m}$ of gate width
$-L$ and t_{ox} both scale with process
- Often just C_{g}

Delay B

Diffusion Capacitance

- $C_{s b}, C_{d b}=$ "source/drain to bulk"
- Undesirable, called parasitic capacitance
\square Capacitance depends on area and perimeter
- Comparable to C_{g} for contacted diffusion
- $1 / 2 C_{g}$ for uncontacted
- Varies with process
- Often just C_{d}

- "Contacted diffusion" occurs when there is a metal contact "touching" the diffusion
- i.e. there's a "wire" on the source or drain
\square Appears on both source \& drain
- But ignore when connected to V_{dd} or Gnd
- Capacitance is "shorted out"

Contacted vs. Uncontacted Capacitance

- Transistor Layout
- Contacted Source/Drain - Physically Larger => more cap
- Uncontacted Source/Drain - Smaller

Definitions

- Waveform
- Rise time $t_{r}=$ time to rise from 20% of Vdd to crossing 80% of Vdd
- Fall time $\boldsymbol{t}_{f}=$ time fall from 80% of Vdd to crossing 20% of Vdd
- Edge Rate $t_{r f}=\left(\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{f}}\right) / 2$
- Logic gate input to output
- Propagation delay $\boldsymbol{t}_{\text {pd }}=$ max time from input crossing 50% of Vdd to output crossing 50% of Vdd
- $\boldsymbol{t}_{\text {pdr }}=$ delay when input is rising
- $t_{\text {pHL }}=$ delay when output goes from High to Low
- $\boldsymbol{t}_{\text {pdf }}=$ delay when input is falling
$-\boldsymbol{t}_{p L H}=$ delay when output goes from Low to High
- Delay $t_{p}=\left(\mathrm{t}_{\mathrm{pHL}}+\mathrm{t}_{\mathrm{pLH}}\right) / 2$
- Contamination delay $\boldsymbol{t}_{\text {pd }}=$ min time from input crossing 50% of Vdd to output crossing 50% of Vdd
- i.e with no load on output, in either direction

Effective Resistance

Shockley models have limited value

- Not accurate enough for modern transistors
- Too complicated for much hand analysis
- Simplification: treat transistor in on state as resistor
- Replace $I_{d s}\left(V_{d s}, V_{g s}\right)$ with Effective Resistance R - $I_{d s} \sim V_{d s} / R$
- R averaged across switching of digital gate
\square Too inaccurate to predict current at any given time
- But good enough to predict RC delay

Approximating Output Resistance (4.3.7)

- Want Effective Resistance that has ~ same current as transistor when $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{dd}} / 2$
\square No single R value matches transistor through switching event
- Approach:
- Look at IV trajectory as input
 Vgs rises high enough to start transition
- While still being in saturation
- Compute average V/I on this trajectory

Delay B

$$
\begin{aligned}
R & =\ln (2) *(3 / 4) * V_{\text {dd }} / I d s a t \\
& \sim(1 / 2)^{*}\left(V_{\mathrm{dd}} / I d s a t\right)
\end{aligned}
$$

Approximating $\mathbf{R}_{\mathbf{O N}}$

Drawing Equivalent Circuits for Delay

\square Model rise and fall as separate circuits
\square Look at only the output of logic gate being modeled

- But consider capacitance from the gate it is driving
\square Model transistors that turn "OFF" by an open
\square Ignore all capacitors with both ends to a rail
- Model transistors that turn "ON" by their resistance
- If source is $V_{d d}$ or $V_{\text {gnd }}$, model voltage on that terminal as a "STEP Voltage"
\square Ignore all capacitors with one end "floating"
\square Lump ALL capacitors tied to same wire together
- Ignore which rail other side goes to

D Draw as equivalent RC "Ladder" driven by step voltage

Inverter Delay Estimate

Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate

- Assume input going Low to High

Inverter Delay Estimate

Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate

\square Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate

Estimate the delay of a fanout-of-1 inverter

Delay Case 1

Delay Case 1

$d=84 R C$

Delay Case 2

Note the geometric progression in size!

- 3X per stage.
\square The delay for each stage is the same

Delay Case 3

Delay Case 3

$d 1=9 R C$

$$
\begin{aligned}
& \mathrm{d} 2=9 \mathrm{PC} \quad \mathrm{~d} 5=129 / 16 \mathrm{RC}=8.1 \mathrm{RC} \\
& \mathrm{~d} 3=9 \mathrm{RC} \\
& \mathrm{~d} 4=9 \mathrm{RC}
\end{aligned}
$$

$$
d=d 1+d 2+d 3+d 4+d 5=44.1 R C
$$

\square Case 2 = 36 RC < Case 3 = 44 RC < Case 1 = 84 RC \square You can have too much of a good thing!

Some Review

$\square \mathrm{k}$: transistor's width is k times unit width
\square On resistance is $1 / k$ times unit transistor
$\square C_{g}$ is capacitance of gate to body
$-C_{g-k}$ is k times $C_{g-u n i t}$ of unit transistor

- $C_{\text {diff }}$ is capacitance to body from a contacted source or drain
- Approximately $=\mathrm{C}_{\mathrm{g}}$
- Diffusion capacitance of uncontacted source/drain connection is less but approx as same

3 Input NAND

(a)

(b)

FIGURE 4.7 Equivalent circuits for a 3-input NAND gate

Elmore Delay Model

FIG 4.3 RC ladder for Elmore delay

$$
\text { Delay }=\sum_{i} R_{n-i} C_{i} \sim \sum_{i=1}^{N} C_{i} \sum_{j=1}^{i} R_{j}
$$

What If Output Not At End?

Ignore R_{2} thru R_{n}, \& just sum C's
Delay $=\mathrm{R}_{1} * \sum \mathrm{C}_{\mathrm{i}}$

In reality, $\mathrm{C}_{2}, \ldots \mathrm{C}_{\mathrm{N}}$ "shielded" by R's (don't have to charge all way to voltage at Y)

Thus a "conservative" estimate

Elmore Delay of 3 NAND

- Assume not driving any other gates
- This is called the Parasitic Delay

- Fall Delay $=(R / 3) 3 C+$ $(2 R / 3) 3 C+(3 R / 3) 9 C=12 R C$
\square
Rise time $=R^{*}(9 C+3 C+3 C)$
- Why is this worst case?
(c)

(d)

(e)

What's the Capacitance We're Driving?

$\mathrm{C}_{\text {in }}=$ capacitance a logic gate imposes on whoever drives it
(a)

$C_{\text {in }}=3$

(b)
$C_{\text {in }}=4$

$C_{\text {in }}=5$

FIG 4.9 Logic gates sized for anit resistance Note: Fig \# From book Assuming:
version 3 - gate width is indicated as \# in each transistor

- gate capacitance of unit transistor $1 \mathrm{C}_{\mathrm{g}}=\mathrm{C}$

Simple Example: Effects of Drive

- Estimate worst-case rising and falling delay of 2input NAND driving h identical gates.

Summary Delay Estimation

Assume driving h identical 2in NANDs

FIG 4.6 NAND gate delay estimation

Size 2 because in series
Elmore delays:
Worst Case Rise $=\mathrm{R}(6+4 \mathrm{~h}) \mathrm{C}=(6+4 \mathrm{~h}) \mathrm{RC}$
Worst Case Fall $=(\mathrm{R} / 2)(2 \mathrm{C})+\mathrm{R}^{*}(6+4 \mathrm{~h}) \mathrm{C}=(7+4 \mathrm{~h}) \mathrm{RC}$
Delay B
CMOS VLSI Design

Let's Do the Book's 3NAND

(c)

(d)

(e)

Contamination Delay

- Contamination $=\min$ possible
- On fall, best if both bottom NMOS Ts on
- Diffusion cap already drained
- Only R effective left
- Delay =
\square On rise, best when ALL 3 PMOS turn on
- Resistances in parallel
- Delay =

Layout Dependent Capacitance

FIG 4.1 3-input NAND gate with

(a)

FIG 4.2 3-input NAND gate annotated with capacitances
Assuming all diffusion nodes contacted unit rise and fall resistance

FIG 4.5 3-input NAND annotated with diffusion capacitances extracted from the layout

